A Constraint-based Approach to
Name Binding and

Type Checking using Scope
Graphs

Master’s Thesis

Hendrik van Antwerpen

A Constraint-based Approach to
Name Binding and
Type Checking using Scope
Graphs

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in
COMPUTER SCIENCE

by

Hendrik van Antwerpen
born in Rotterdam, Netherlands

]
TUDelft

Software Engineering Research Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands

www.ewi.tudelft.nl

www.ewi.tudelft.nl

(© 2015 Hendrik van Antwerpen.

This work is part of the following publication:

Hendrik van Antwerpen, Pierre Neron, Andrew P. Tolmach, Eelco Visser, and
Guido Wachsmuth. A constraint language for static semantic analysis based
on scope graphs. In PEPM, pages 49-60, January 2016.

Cover picture: Prime knot 8y. Courtesy of David Fremlin.

A Constraint-based Approach to
Name Binding and
Type Checking using Scope
Graphs

Author: Hendrik van Antwerpen

Studentid: 1148974

Email: H.vanAntwerpen@student.tudelft.nl
Abstract

Recently scope graphs were introduced as a formalism to specify the
name binding structure of a program and do name resolution indepen-
dent of the abstract syntax tree of a program. In this thesis we show how
to use a constraint language based on scope graphs to do static analy-
sis of programs. We do this by extracting constraints from a program,
that specify name binding and typing. We treat binding and typing as
separate building blocks, but our approach allows language constructs
— such as access of record fields — where name and type resolution are
mutually dependent. By using scope graphs for name resolution, our ap-
proach supports a wide range of name binding patterns that are not easily
supported in existing constraint-based approaches. We present a formal
semantics for our constraint language, as well as a solver algorithm, for
which we discuss soundness, termination and completeness of the solver.
We evaluate our approach by expressing the static semantics of PCF and
Featherweight Java with our constraints, and we implemented the solver
algorithm, as well as static analysis for both languages, in the Spoofax
language workbench.

Thesis Committee:

Chair: Prof. Dr. E. Visser, Faculty EEMCS, TU Delft
University supervisor: Dr. G.H. Wachsmuth, Faculty EEMCS, TU Delft
Committee Member: Dr. W.S. Swierstra, Faculty of Science, Utrecht University

mailto:H.vanAntwerpen@student.tudelft.nl

Explain, before you travel on P f
What faculty you've settled on. re aC e
Mephistopheles to a student
In: Goethe, Faust

When I came to Delft, I was convinced a degree in physics is what I wanted.
It would take several more years, and a few detours, before I finally found my
calling as a computer scientist. With the submission of this thesis, I now enter
the final stage of my studies. This thesis is the result of a year’s work on a
project, that was very exciting for me. Not only was I fascinated by the topic,
but I was also motivated by the fact that we aimed for a publication. I want
to thank Andrew Tolmach, Eelco Visser, Guido Wachsmuth, and Pierre Néron,
for showing me the ropes of academic research. At times it felt as if I had four
supervisors, instead of a single one, which may sound like a challenge, but
was actually very positive. Our discussions have taught me a lot, and I have
enjoyed working together.

During my years of study, I have enjoyed the company and support of
many people. I want to thank my parents, whose continuous support was es-
sential in getting where I am now. I am grateful for the many wonderful and
interesting people I have met, and the good friends I have made during my
studies, whether it was in a board, on the dance floor, at work, or elsewhere.
Finally, I want to thank Nina for proofreading this thesis, but more so for reg-
ularly bringing me back to all that is called reality.

Hendrik van Antwerpen
Delft, Netherlands
December 28, 2015

Preface

Contents

List of Figures

List of Theorems

1

Introduction
1.1 Contributions
1.2 Outline

Preliminaries

21 TheLanguageLMR
2.2 Name Binding with Scope Graphs
2.3 Type Checking with Constraints

Constraint Language
3.1 Constraints for Static Analysis
3.2 Constraint Semantics

Solver
41 Solver Algorithm
42 Formal Properties

Evaluation

5.1 Static Semanticsof PCF.
5.2 Static Semantics of Featherweight Java
5.3 Prototype Implementation

Related Work
6.1 Constraint-based Approaches to Static Analysis
6.2 Other Approaches to Static Analysis

iii

Contents

N

O8]

o U1 Ut

19
.......... 19
.......... 30

35

.......... 35
.......... 40

47

.......... 47
.......... 49
.......... 54

CONTENTS

Discussion
7.1 Constraint Language .
72 Solver..........

7.3 Prototype Implementation

Bibliography

A

iv

Proofs
A.1 Reduction Invariant . .
A.2 Reduction Termination

61
61
63
64

65

2.1
22
2.3
24
2.5
2.6
2.7
2.8
29
2.10

3.1
3.2
3.3
34
3.5
3.6
3.7

4.1
4.2
4.3
44
4.5
4.6

51
52
53
54
55

List of Figures

Syntax of LMR 6
Example of identifiers in global scope 7
Example of lexical scoping 8
Example of module import 9
Example of record fieldaccess 11
Name resolution algorithm 12
Notation overview of the resolution calculus 14
Syntax and constraints of the simply-typed A-calculus 15
Example for the simply-typed A-calculus 16
Unification algorithm, 18
Syntax of the constraintlanguage 20
Example of record definition. L. 22
Example (cont.) of record instantiation 26
Example (cont.) of fieldaccess 27
Constraint generationfor LMR 28
Constraint generation for LMR (cont.) 29
Semantics of the constraint language 31
Constraint solving algorithm 36
Constraint solver rewrite rules: type checking 37
Constraint solver rewrite rules: name resolution 38
Constraint solver rewrite rules: subtyping 40
Example of incompleteness 44
Example of incompleteness 44
Syntaxof PCF 47
Constraint generation functionfor PCF 48
Syntax of FeatherweightJava 49
Constraint generation function for Featherweight Java 51
Constraint generation function for Featherweight Java (cont.) 52

3.1
3.2
3.3
34
3.5
3.6
3.7

4.1
4.2
4.5
4.6
4.7
4.10
41
4.11
4.12
4.11
4.13

Al
4.7
4.12

List of Theorems

Definition (Constraint contextA) 30
Definition (Well-formednessof) 32
Definition (Well-formednessof G) 32
Definition (Minimalityof G) 32
Definition (Well-formednessof R) 33
Definition (Well-formednessof <) 33
Definition (Minimalityof <7) 34
Theorem (Soundness of SOLVE) 40
Definition (Full Instantiation of (C;A)) 41
Definition (Well-formedness of (C;A)) 41
Definition (Context preorder C) 41
Lemma (Invariantof —) 42
Lemma (Soundnessof —) 42
Theorem (Soundness of SOLVE) 43
Theorem (Termination of SOLVE) 43
Lemma (Terminationof —) 43
Theorem (Termination of SOLVE) 43
Definition (Completeness of SOLVE) 44
Lemma (Stable scope graph) 69
Lemma (Invariantof —) 69
Lemma (Terminationof —) 82

vii

Chapter 1

Introduction

Language workbenches (Fowler, 2005) support the implementation of compil-
ers and integrated development environments for programming languages.
They provide high-level specification languages — or meta-languages — for
different language aspects, such as static and dynamic semantics, and editor
services. These specifications are interpreted by generic algorithms, or used
to generate an implementation. This hides low-level implementation details
from a language designer, both taking away a big source of errors, and speed-
ing up development. There are several actively developed language work-
benches available (Erdweg et al., 2013). Finding useful abstractions for speci-
tying language aspects is an active area of research (Visser et al., 2014).

The specification of static semantics is one of these aspects. When talking
about statically typed languages, we distinguish between static and dynamic
semantics. A static semantics describes when a program is well-formed, by
means of a type system. A dynamic semantics describes how such a well-
formed program is executed (Harper, 2012). Type checking serves to “prove
the absence of certain program behaviors by classifying phrases according to
the kinds of values they compute” (Pierce, 2002). Type checkers are algorithms
that infer the types of a program, or check it against user-supplied type anno-
tations. One approach to implement type checkers is to representing well-
formedness of the program as a constraint problem, and implement the type
checker as a constraint solver. A satisfying solution to the constraint problem
corresponds to a valid type for the program. This allows a clean separation be-
tween specifying when a program is well-formed — by generating constraints
—and checking or inferring the program types — by solving those constraints.
The constraint generation is concerned with the details of the programming
language, while the constraint solver can ignore those details, and only de-
pends on the, usually much smaller, constraint language.

Constraint based type checkers have been developed for several (classes
of) languages, e.g. work by Heeren et al. (2002); Pottier and Rémy (2005); Sulz-
mann et al. (1999) for functional languages with Hindley-Milner style type
systems, like ML and Haskell, and work by Palsberg (1996) for object-oriented
languages with subtyping and inheritance. These constraint systems tend to
depend on the specific name binding structure and types of the object lan-

1

1. INTRODUCTION

guage. In more theoretical treatments, the issue of name binding is sometimes
completely ignored. Reuse of these systems outside of their intended domain
is therefore cumbersome.

In this thesis we present a constraint language that is not specific to one
language, but can be used to express the static semantics for a range of lan-
guages. Type constraints are based on syntactic equality and unification, a
well-understood theory, which is at the basis of many constraint based type
systems. Name binding constraints are based on the name resolution calculus,
recently introduced by Neron et al. (2015). By representing the name binding
structure of a program as a scope graph, it allows us to do name resolution in-
dependent of the programs abstract syntax tree. We also introduce constraints
to check that names are distinct, or that two sets of names are disjoint. By us-
ing an extended theory that allows incomplete scope graphs that contain con-
straint variables, we support interaction between name resolution and type
checking.

This is important, because although name resolution and type checking
cannot always be stratified. In languages with records or classes, named access
to a field by name depends on type information. For example in Java, the
expression e.f1ld refers to a field, which can only be resolved when the class
type of e is known. The type of the field can only be determined after the
name is resolved, therefore a mutual dependency between name binding and
type checking sometimes exists. Our approach allows us to support language
features like this.

We evaluated the expressiveness of our approach by using the constraint
language to express the semantics of two languages, and the practicality by
implementing a prototype of the solver.

1.1 Contributions

The work presented in this thesis is also part of an upcoming publication (van
Antwerpen et al., 2016). We will first list the contributions of this thesis, and
then highlight the main differences with the publication. The contributions of
this thesis are the following:

e We present a constraint language that combines type checking and name
resolution constraints, and give a formal semantics for the constraint lan-

guage.

e We present a solver for constraint problems, and show that it is sound
and terminating.

e We express the semantics of PCF and Featherweight Java using our con-
straint language.

e We implemented the solver, and static analysis for PCF and Feather-
weight Java, in the Spoofax language workbench.

1.2. Outline

Compared to the paper there are a few differences:

e The constraint language presented in the paper lacks support for sub-
typing.

e The presentation in the paper treats constraints for scope graph construc-
tion differently from the other constraints. Scope graph constraints are
processed first, before solving other constraints. In our presentation con-
straints for scope graph construction are handled uniformly with other
constraints, both in the semantics and in the solver.

e The paper contributes an extension of the name resolution theory of
Neron et al. (2015), which is not a contribution of this thesis. Since the
constraint language relies on this extension, we present it in the prelimi-
naries, separate from our own contributions.

e We provide a soundness proof for the solver that is (1) adapted to the
uniform treatment of scope graph constraints, (2) supports the new sub-
typing constraints, and (3) is more detailed than the proof from the paper.

e The evaluation of the constraint system we present is not part of the pa-
per.

1.2 Outline

The rest of this thesis is organized as follows. In Chapter 2 we introduce the
theory of scope graphs and typing constraints on which the rest of the work
depends. In Chapter 3 we present the constraint language, and state the for-
mal semantics of the constraints. In Chapter 4 we present an algorithm to solve
problems in our constraint language, and discuss termination, soundness and
completeness of the algorithm. In Chapter 5 we show how the constraint lan-
guage can be used to express static analysis for PCF and Featherweight Java,
and discuss the prototype implementation. In Chapter 6 we look at related
work, and in Chapter 7 we discuss limitations and possible future research
directions.

Chapter 2

Preliminaries

In this chapter we introduce the two building blocks of our approach, scope
graphs and type constraints. We use a model language with modules and
records (LMR), for our examples. We give an overview of LMR in the first sec-
tion. In the second section, we introduce name resolution using scope graphs
using a series of examples, that focus on different name binding patterns. We
finish the section by discussing a resolution algorithm. In the last section,
we introduce constraint based type checking for the simply type A-calculus.
First we introduce constraint syntax and generation, following an example
program. Finally we describe unification as a technique to solve these con-
straints.

2.1 The Language LMR

LMR is a small model language we use throughout this thesis for examples.
The syntax is shown in Figure 2.1. The language is basically a simply-typed
functional language, with modules and records. We will introduce each of
these below.

o LMR is a simply-typed functional language, with boolean and integer base
types. A conditional if expression is provided, as well as common arith-
metic and relational operators.

e Record, module, and variable definitions are introduced using top-level
statements, written as module, record, and def respectively. Modules
consist of definitions themselves, and can be nested. Modules can import
other modules by name using an import statement. New bindings in
expressions are introduced by functions, written as fun, and recursive
let expressions, written as letrec.

e The language supports user-defined named records. A record can have a
super type, resulting in nominal subtyping in the language. Field names
are not allowed to shadow fields in the supertype. Record instances are
created with new expressions. Record fields are accessed using dot nota-

5

2. PRELIMINARIES

prog = decl”
decl := module id { decl” }
| import id
| def bind
| record id super { fdecl" }
super = extends id|e€
fdecl := id : tyann
tyann := 1Int |Bool |id|tyann -> tyann
expr = int
true | false
id
expr & expr

if expr then expr else expr

expr expr
letrec bind* in expr
new id { fbind* }

|

|

|

|

| fun (id : tyann) { expr }
|

\

\

| with expr do expr

\

expr.id
bind = id = expr
| id : tyann = expr
foind = id = expr
Type := Bool | Int |Rec(Decl) | Fun|[Type, Type]

Figure 2.1: Syntax of LMR

tion. The with expression takes a record instance as its first argument,
and allows unqualified access to the record fields body expression.

2.2 Name Binding with Scope Graphs

Scope graphs are recently introduced as a formalism to represent the name
binding structure of a program, and do name resolution, independent of a
programs abstract syntax tree (AST) (Neron et al., 2015). The formalism con-
sists of a calculus, and a graphical notation for scope graphs. It is based on
the idea of representing name binding structure as a scope graph, consisting
of scopes, references and declarations. Name resolution corresponds to find-
ing the shortest path in the graph from references to declarations of the same

6

2.2. Name Binding with Scope Graphs

1 def a;, =1
2 def b, =
s if (a, == 0) arar D(ap)
4 then 4 aj+ra; D(a)
5 else a,
(a) Program (b) Scope graph (c) Resolution
Figure 2.2: Example of identifiers in global scope
name.

The original theory was generalized and extended, and integrated with a
constraint language to use it for static analysis of programs (van Antwerpen
et al., 2016). In this section we will present the extended formalism, while the
constraint system, which is the contribution of this thesis, will be the subject
of the following chapters.

We gradually introduce the different features of scope graphs, using bind-
ing patterns of LMR as examples. When introducing a new concept, we show
the graphical notation, before the formal notation of the calculus. For refer-
ence, we present a complete overview of the notation for the name resolution
calculus in Figure 2.7.

2.2.1 Declarations and References

We start by considering the example in Figure 2.2, which consists of only two
top-level definitions. Names in the program are subscripted with a position,
to distinguish between different occurrences of the same name. The subscripts
are therefore not part of the language. The graphical representation of the
scope graph for this program is shown right of the program. It contains a
single scope, two references to a, and two declarations, a and b. In general, a
scope graph — written as G — consists of three types of nodes:

o A scope represents a set of AST nodes that behave uniformly with respect
to name binding. Scopes are identified by elements from an abstract enu-
merable set. We will use numbers in the presentation to identify scopes.

In the graphical notation, a scope looks like @ In the calculus we write
a scope as 1°.

e An occurrence of a name, is a name x with a unique position i attached
to it. We write the position as a subscript to the name, as in x;. In the

graphical notation, names look like .

e A declaration introduces a new name in scope. In the graphical notation,
we write for a declaration, an arrow from the scope to the

occurrence of the name. In the calculus, a declaration is written as x?.
We may omit the position if it is not relevant. The scope of a declaration

7

2. PRELIMINARIES

1 def n, = true
> def f, = E(P,1°) - D(£3)
3 fun (n,: Int) { D(n3)
4 th(Il;)
5 }
(a) Program (b) Scope Graph (c) Resolution

Figure 2.3: Example of lexical scoping

is written as S(xP). The set of all declarations in a scope is defined as

D(s):={d|S(d) =s}.

o A reference refers to a declared name in scope. In the graphical notation, a

reference is depicted as , an arrow going from an occurrence of

a name to a scope. In the calculus, we write a reference as x*. The scope
of a reference is written as S(xf). The set of all references is defined as

R(s):={r|S(r) =s}.

Note that operations such as D(s) are implicitly parametrized by a scope
graph G. When the context requires this, we make the scope graph explicit
with a subscript, e.g. Dg(s).

Intuitively, a reference resolves to a declaration of the same name, if a path
from the reference to the declaration exists in the scope graph. In our examples
both references resolve to the declaration x]. We write a resolution as x§ — x7.
A resolution path describes the steps in the graph necessary to get from the
reference to the declaration. In our example the reference and declaration are
in the same scope, so we can step directly to the declaration. This is written as
D(d). The calculus supports ambiguous resolution, so if multiple declarations
of the same name exist, a reference can resolve to a set of declarations.

2.2.2 Lexical Scoping

The example the program in Figure 2.3, features nested lexical scopes. The
global scope contains two declarations, n and f. The function introduces a
new scope, which contains the declaration of the parameter n. The scope of
the function is connected to its parent scope by an edge, labeled P for parent.
Later we will also see other labels on edges. In general, scope graphs allow
labeled edges between scopes:

e A direct edge between two scopes i° and j°, allows declarations from j°
scope to become visible in i°. In the graphical notation we depict such
an edge as , where [is its label. In the calculus we write & (s)
for the set of [-labeled edges starting from s. The set of scopes reachable
from s through an [-labeled edge is defined as s} = {s' | (s,s’) € &(s)}.

2.2. Name Binding with Scope Graphs

1 module A, {
2 def a, = 4 AZ s Al_f
> d s D
-D(A
4 module B; { i E(ID’,l) D(47)
i t A a7 — az
. detb -a N(LAL2%) - D(K?)
R EA R TR E Y o 1
7}
(a) Program (b) Scope graph (c) Resolution

Figure 2.4: Example of module import

The reference nf in our example resolves to n5, even though n} is also
reachable in the graph. This is because declarations in outer scopes are shad-
owed by declarations with the same name in the inner scope. Consider the res-
olution path to the outer declaration, which would be E(P,1°) - D(n?). Since it
is longer than the alternative (chosen) resolution, it is rejected. In general, the
order on resolution paths is determined by a visibility order:

e The theory is parametrized by a set of labels £ and a partial label order
< : L x L. The predefined label D is used for the step from a scope to
a declaration in that scope. This label is the smallest possible label, i.e.
VieL.(I#D = D <I).

e The visibility order on paths is defined inductively based on the label or-
der. The order is the order of the first labels, unless their order is not
defined, in which case the order is that of the tails of the paths.

We can now see that the desired lexical scoping behavior is achieved using
L = {P}, and a label order D < P.

2.2.3 Imports

Our next example, shown in Figure 2.4, defines two modules, A and B. Module
B imports module A, making the declaration of variable a accessible in the body
of B. This behavior is modeled by two edges in the scope graph. One edge
associates declaration A} with scope 2°. Another edge — labeled I for import
— from 3° to reference Af, imports the scope associated with the declaration
that reference Af resolves to. One can think of these two edges as forming
a higher-order edge between the scopes 3° and 2°. In general, scope graphs
allow labeled edges from scopes to references, and edges from declarations to
scopes:

o An associated scope edge relates a declaration x} with a scope j°. In the

graphical notation, an associated scope is depicted as . In the

calculus we write the associated scope of a declaration as A(x?).

2. PRELIMINARIES

o A named edge between a scope i° and a reference x]R, can be thought of as
a higher-order edge. It allows a step to the associated scopes of the decla-
rations that x]R resolves to. The declarations from those scopes will be vis-

ible in i°. In graphical notation, a named edge is depicted as .

In the calculus we write NV (s) for the set of [-labeled edges starting from
s. The set of scopes reachable through an /-labeled named edge is defined
ass;={s'"|(s,r) e Ni(s) A\r—=dNA(d) =5"}.

In our example we introduced a new label I to indicate an import edge.
LMR follows the usual convention that imported declarations have precedence
over declarations from outer lexical scopes. We model this by adding I < P to
the label order. However, this is not enough to ensure resolution is correct.
It is still possible to resolve a reference in the lexical parent of an imported
module, yielding a resolution path like N(I,-,-) - E(P,-) - D(-). The visibility
ordering cannot prevent a resolution like this. Therefore, the theory uses a
well-formedness predicate on resolution paths to restrict the set of valid reso-
lutions:

e Path well-formedness is defined as WF(p) = labels(p) € L(E), where the
function labels(p) projects the labels of a resolution path, and £ is a regu-
lar expression over a string of labels. The calculus is parametrized in the
regular expression &£.

Now, by choosing the well-formedness regular expression to be £ = P* - I*,
we prevent visiting lexical parent scopes after we have used an import edge.
Note that this allows transitive imports. If we would like to have non-transitive
imports instead, we can use £ = P* - L.

224 Type-dependent Name Resolution

In the program in Figure 2.5, we define an instance b of a record, and then
access its field £. The declarations and references are not enough to resolve
the field reference. The the scope in which we need to resolve the field name
depends on the type of b. Instead of the unknown scope, we use a variable
¢ as the target of the direct edge from 4°. We use the label S to distinguish
edges that have to do with record subtyping from module imports. In the
following chapter we will explain that this variable is a constraint variable,
which is instantiated by a constraint solver. For now we just show the scope
graph before and after instantiating the variable to 2°. In general, the calculus
allows scope graphs to be incomplete:

e An incomplete scope graph is a graph G where there exist direct edges
whose target is a variable. In the graphical notation, we write @iw g:>.

Since we have introduced a new label S for edges related to record sub-
typing, we must also update the label order and well-formedness predicate.
We add S < P to the label order. Note that we do not define the order between
S and I. Since we do not create scope graphs for LMR programs where scopes

10

2.2. Name Binding with Scope Graphs

.) Af— A7 D(A7)
1 record A, f, : Int R D R AS D
2 def a, =new A, { f, =11} fs 1 N(S,45,27)-D(f3)

3 def b, = a,.f, aj a3 D(a3)
£§ — £5 E(S,2°) - D(£5)

(a) Program (b) Resolution

27| [Be] Josl 2] %] [2]

B 080

(c) Initial scope graph (d) Instantiated scope graph

Figure 2.5: Example of record field access

have both types of edges, this is not relevant. In general though, the references
visible through two edges with labels /; and I, will be treated equally if
and /, have no defined order. Our well-formedness regular expression will be
£ =P* - (S* +1I"). By using a different label for supertype edges, we can still
choose between transitive and non-transitive module imports, without break-
ing record subtyping.

Resolution in an incomplete graph is still partially possible. We observe
that a variable edge represents a unknown set of visible declarations. This
means that any declaration visible through an edge with a larger label might
be shadowed, and is therefore unsafe. Any declaration visible through edges
with smaller labels can however safely be resolved. We will see in the next sec-
tion that the resolution algorithm resolves as many references as possible. In
Chapter 3 we will see how alternating partial resolution and variable instanti-
ation can be used for mutually dependent name resolution and type checking.

2.2.5 Resolution Algorithm

In the previous section we have already informally talked about resolving
names. In the name resolution calculus this process is formally defined with
reachability, visibility, and resolution relations:

e A declaration is reachable from a scope s, written as t-g s — x7, if there is
a path in G from s to the declaration.

11

2. PRELIMINARIES

lifp=Pand {x? |x? €D} =2
RES[I](xF) := { T SR
{x{ | x} € D}

where ENV [{x} UL, @](S(()x})) = (p, D)

. Is _ (T,®)ifs€Sorre=0
NVl S)(E) = {ENver{D}[]I,S] (s)
ENVELS)(s) = U (ENvig’EL“’<’} IL,S](s) < ENV., [H,S](s))

lemax(L)

(T,®)ife &re

ENVZ[LS](s) := {(T,D(S>)

L if vars(£(s)];) # @ or IS'[I](s) = L
ENVL[LS](s) = U ENV(L {s} US](s")
e (1 [I(5)U(E))
Lif Fy®. (y® € (M(s)\I) ARES[I](yF) = 1)
{5/ 1y € W(s)\I) AP € Res[)(yf) A y? — s}

with the following auxiliary definitions:

IS (s) =

g;re Brzozowski (1964) derivative w.r.t. label [
max(L) = {leL|Al'eL.I<]!}

and the shadowing and union operators on environments

(p1,D1) if Dy #T
,D1) < (po, D

(pl 1) (Pz 2) {(szDl U {xlp eD, ‘ ExD c Dl})

(T,D)ifVielp,=T
i€l ’

where D = {x} € UiDi |Viel.(pj=TvVv3x" €D}

Figure 2.6: Name resolution algorithm

12

2.3. Type Checking with Constraints

e A declaration is visible in a scope s, written as g s — x?, if (1) the decla-
ration is reachable from s, and (2) there is no other declaration x][-’ that is
reachable from s with a shorter path.

e A reference resolves to a declaration, written as g xf — x].D, if the dec-

laration is visible from the scope of the reference, i.e. if S(xf) =s and
Fg s — x7 hold.

The algorithm shown in Figure 2.6 performs name resolution in a — possi-
bly incomplete — scope graph. Like the calculus it is parametrized by the set
of labels L, the label order <, and the regular expression £. Like the original
resolution algorithm (Neron et al., 2015), it allows us to resolve individual ref-
erences, using the function RES, or calculate all visible declarations in a scope,
using the function ENV. Compared to the original algorithm, there are three
main modifications:

e Instead of hard-coded parent and import edges, the algorithm works
with arbitrary edge labels. The label order is used in ENVL to ensure
an environment for label / is properly shadowed by the environments of
smaller labels.

e The algorithm checks path well-formedness by performing a step-by-
step match against £. This is done by calculating the Brzozowski (1964)
derivative, written as d;re, at every /-labeled step. If a step is invalid,
0, = @, and the calculation backtracks. If the step is valid, o,re is a reg-
ular expression matching any valid remaining path. The current path
matches the original £ if re matches the empty string, i.e. € € re, which is
therefore the condition for returning declarations.

e In an incomplete graph, the algorithm tries to include as many declara-
tions as possible in the calculated environments. A flag is used to indi-
cate whether an environment is partial (P), or total (T). In a total environ-
ment, no new declarations can appear because of variable instantiation.
In a partial environment, new declarations may appear after variable in-
stantiation. However, if a partial environment contains any declaration
for x, it is complete with respect to the name x, i.e. instantiation variables
cannot result in new declarations of x in the environment.

2.3 Type Checking with Constraints

Constraint-based type checking is an approach to type checking, based on gen-
erating and solving constraints. Constraints are typically generated from a
program term by a language-specific, syntax-directed function. A constraint
solver is used to test if the constraints are satisfiable, and to calculate a solution
—usually a type assignment for the original program.

There are several advantages to separating constraint generation and reso-
lution. First, the solver only needs to deal with the intermediate constraint lan-
guage, which is usually small compared to the language of the program. This

13

2. PRELIMINARIES

name
position
scope
declaration

reference

scope graph

declaration scope
reference scope

associated scope
declarations in scope
references in scope

direct [-edges from scope
named /-edges from scope
direct [-edge scopes
named /-edge scopes

set of labels
edge label
resolution step

resolution path

partial label order

visibility order

regex over labels
well-formedness
reachability relation
visibility relation

resolution relation

X,y
ij

N~
»n T [\ ™=
//_/_/VQ

25OV ® o

o~~~ —~
v5)
~—

)
i 4

%2}
o —=v

2]
~~ o~

p

L <1

p1<p2

£
WEF(p)
Fs—d
Fs—d
Fr—d

{d|S(d)

=5}
{d]S(d) =s}

{s'| (s,;5') € &(s)}
{s"| (s,r) EN(s) Ar—>d N A(d) =5}

(UL

D(d) | E(1,s) | N(L,7,s)

st-ple

14D

D<!

label(sty) < label(st,) 1 < P2
sty p1 <sty-py st-p1 <st-p;

Dle|l|E|E-EIEFEE&E
labels(p) € £

The calculus is parametrized in the set of labels £, the label order <, and

the well-formedness regular expression &£.

Figure 2.7: Notation overview of the resolution calculus

14

2.3. Type Checking with Constraints

expr = id | fun(id){expr} | expr expr
type t := T|Funltt]
constraint C = CAC|t=t
type environment r
substitution Q0

pEC pEC he=te
p=CIAG pEH=1h

The constraint generation function is given by:

satisfiability ¢=C =

[Tx:t] = TI(x)=t
[T+ fun(x){e}:t] = [I,(x:1)Fe:T]At=Fun|n,]
[THee:t] = [[Fe;:Fun[t,t{]A[TFey:T]

Variables T that appear free are assumed to be fresh.

Figure 2.8: Syntax and constraints of the simply-typed A-calculus

keeps the complexity of the program language local to the constraint genera-
tion function. Second, the constraint language is usually more stable, therefore
changes to the program language do not necessarily require changes in the
solver. Finally, because the constraint language is independent of a specific
program language, multiple languages can use the same constraint language
and solver for type checking.

We introduce constraint-based type checking using a subset of LMR, shown
in Figure 2.8, that corresponds to the simply-typed A-calculus (cf. Rémy, 2015,
Section 5.2). The language has a function type, but base types are omitted from
the presentation. We will see that they are not essential for constraint genera-
tion or resolution.

2.3.1 Constraint Generation

Constraints are generated from a program using a syntax directed function.
Figure 2.8 shows the syntax of constraints and types, as well as the constraint
generation function. Constraints are conjunctions of equality constraints be-
tween types. Constraint variables — sometimes called unification variables —
are used for unknown types, which need to be resolved.

The constraint generation function matches a typing relation I' ¢ : t. The
idea is that e has type t in the context of T, if the generated constraint is satis-
tiable. The typing environment I' contains the types for identifiers that are in
scope. A function adds its argument to the type environment, which is then
used for the function body. References are resolved by a lookup in the envi-
ronment.

15

2. PRELIMINARIES

1 (fun (f) { fun x) { £ x 2} }) (fun x) { x })

T, = Fun[1,, 5]

T, =T
Fun[7y, T] = Fun[7y, T5]

T5 = Fun|T,, T7]

To = Ty

7, = Fun|Tg, T7]

(b) Constraints

1)
()
)
(4)
()
(6)

(a) Program

T+ Fun[t, ;] 7+ Fun|[t, 7]
T T T Ty
T, — Fun|t, 7] 5 — Fun|[t,]
To = Ty TR — Ty

(c) Solution

Figure 2.9: Example for the simply-typed A-calculus

Figure 2.9 shows an example program. It applies a function to the iden-
tity function. The function applies its first argument to its second argument.
The whole expression reduces to an identity function. We will use the con-
straint generation function shown in Figure 2.8, to generate the constraints for
this program. We assume there are no identifiers in global scope, so we start
with the empty type environment I' = . We assign the type variable T to
the whole program. Therefore, we apply our constraint generation function to
@ Fe: 1. We show the constraint generation step by step, marking the parts

that changed:

C=[@F fun(){fun(x){f x}}) (Fun(x){x}) : 7]
= [@F fun(f) {fun(x){f x}}:Fun[t, T|]] A [@F fun(x){x}: 4]
= [@F fun(f) {fun(x){f x}}:Fun[t, T]JA[(x: %) Fx: 1]

VAN T = F'llIl[Tz, T3]

= [@F fun(f){fun(x){f x}}:Fun[r,7]] AT = 13 A Ty = Fun|[n,, 5]

=[(f: 1) F fun(x){f x}:] AFun|[ry, 7] =Funlty,) A T = T

AN T = F'l.lIl[Tz, T3]

A T = T3 A T1 = Fun[Tz,T3]
[(f:7,x:1) F£f:Fun[tg, w|] A[(f: 7y x:7) Fx: 18]

[(f:74,%:7) F £ x:] A5 = Fun[t, 7] A Fun|ty, 7] = Fun|ty, T5]

A T5 = Fun[T6, T7] VAN FllIl[Tl,T] = Fun[T4, TS] VAN T < T3

VAN Tl =5 Fun[Tz, T3]

= [[(f Ty, X Té) F£: Fun[Tg,Ty]]] N Tg < Tg VAN T5 < Fun[Té,T7]

AFun[t,T] = Fun[t, 1) A T = 5 A Ty = Fun[n, T3]

=T = Fun[TS, T7] N Tg = Tg N Ts < Fun[T(,,Ty] A Fun[Tl,T] < Fun[T4, T5]
A\ T =S T3 N 71 SS Fun[Tz,T3]

16

(1)
(2)

)
4)
)

(6)

)

(8)

©)

2.3. Type Checking with Constraints

Note that the identifiers of the program do not appear in the resulting con-
straint. Looking up the types of identifiers is built into the constraint genera-
tion function. For a lexically scoped language like this, this works well, since
the scoping structure matches the recursive calls in the constraint generation
function. This can quickly become a problem for languages with more com-
plicated, non-lexical, binding patterns. As we will see in the next chapter, this
problem can be mitigated by lifting name resolution to the constraint problem.
This enables us to keep the constraint generation simple, while still allowing
complicated binding patterns.

2.3.2 Constraint Solving by Unification

Constraint solving involves finding an assignment to the type variables, such
that the constraints are satisfied. For equality constraints, this process is known
as first-order unification.

Satisfiability is denoted as ¢ |= C, where ¢ is a substitution, mapping vari-
ables to ground types. The satisfiability relation is shown in Figure 2.8. A
conjunction C; A G, is satisfied if the substitution satisfies both C; and C,. An
equality constraint is satisfiable if the two side are equal after application of
¢. Applying a substitution ¢ to a term ¢, written in postfix notation as to is
defined in the usual way as:

« otherwise

o {t’ if () =#
f(ty,... ty)o = f(tio,...,t,0)

The above definition of substitution, and indeed the whole process of unifi-
cation, assumes that our types are terms in a Herbrand universe. That is, terms
are recursively generated over a signature that defines a set of function sym-
bols f, g and an arity for each function symbol. Terms are formed by applying
a function symbol to a number of term arguments, where that number equals
the arity of the symbol. For example for a symbol f with an arity of three, we
could form a term f(t;,t,,t3), where the t;’s denote other terms. Concretely,
the set of signatures for our types would be {Fun}, and the symbol Fun has an
arity of two.

Before we look at the unification algorithm, we note that application of a
substitution to another substitution, is interpreted as a composition of substi-
tutions. Applying the composition to a term should yield the same result as
applying the substitutions consecutively. So, given two substitutions ¢,¢” and
their composition c¢’, it holds that

Vt.t(oo') = (to)o’

An algorithm solving equality constraints by first-order unification is shown
in Figure 2.10. This algorithm is formulated as a set of rewrite rules over a

17

2. PRELIMINARIES

Co—Co
s=sANC;, ¢ — C;¢
ft,eoty) = f(t, .)ANC; 9 — H=H A t,=thAC; @
f(ty,eoty) =g, .. E)ANC; ¢ — L Gf f #9)
t=TAC; 9 — T=tAC; @
(if t not a variable)
T=tANC; ¢ — L (iftevars(t)andT#1t)
T=tANC; ¢ — Cltt}; p{Tt—1t}
(if T ¢ vars(t))

Figure 2.10: Unification algorithm

constraint and a substitution. It works by eliminating or simplifying the con-
straint, while building the substitution — also called a unifier. We will show
how the rules apply to some of the constraints from our example.

Constraint (1) results in the elimination of 7y, resulting in the substitu-
tion 7; — Fun|T,, 73]. After the application of this substitution, constraint (3)
will have become Fun[Fun[t,, 73], 7] = Fun[ty, T5). Since their function symbols
match, it can be simplified, introducing two new constraints, Fun[1,, ;3] = 14
(7) and T = 75. Constraint (7) can be oriented 7, = Fun[T,, T3], after which 7, can
be eliminated. This process continues until an error occurs, or all constraints
are eliminated. There are two kinds of errors that can occur during unifica-
tion. One is when the two function symbols in the equation are different, e.g.
Fun(t;,t,] = Nat — assuming a base type Nat for the moment. The other is with
a constraint like T = Fun[t, 7], where the variable on the left occurs as a strict
subterm of the right-hand side. In a syntactic model like ours, this is impos-
sible, the variable cannot be a subterm of itself. Therefore, the substitution
produced by U are idempotent. A substitution is idempotent if repeated ap-
plication has the same effect as applying it once, i.e. too = to. Composing an
idempotent substitution with itself, has no effect, i.e. co = 0.

A possible solution is shown in the right of Figure 2.9. We say possible
solution, because solutions from unification are usually not unique. For ex-
ample, the constraint t, = Tg can be solved by the substitutions 7, — T3, or
Tg — T7. The algorithm does however ensure that the calculated unifier is a
most general one. This means that every possible unifier is an instance of the
one returned by the algorithm:

VCe.(C:0 — @9 = (9 =EC AV = C.30.go=¢))

18

Chapter 3

Constraint Language

In this chapter, we introduce the syntax and semantics of the constraint lan-
guage, and show how it is used to express static analysis for LMR. The main
idea of the constraint language is, that it contains name binding constraints,
next to the typing constraints we already saw in the previous chapter. Specifi-
cally, the language provides primitive constraints for (1) type checking, (2) con-
struction of the scope graph, (3) name resolution, and (4) nominal subtyping.
Larger constraints are built as conjunctions, written as C A C, of these primitive
constraints.

In the first section we introduce the constraint syntax. We start by explain-
ing our general approach to constraint-based static analysis. Then we describe
the primitive constraints, following an example program. We finish the section
by showing the general structure of a solution to a constraint problem. In the
second section we define a satisfaction relation, which formalizes the mean-
ing of the constraints, and describes what a solution to a constraint problem
is. For reference, we include a complete overview of the constraint syntax in
Figure 3.1.

3.1 Constraints for Static Analysis

Analysis of a program follows the same two-phase approach that we have seen
for the simply-typed A-calculus in the previous chapter. First, constraints are
generated using a constraint generation function, specific to the programming
language. Second, the generated constraints are solved using a language-
independent constraint solver. The constraint generation function has the fol-
lowing form:

fe: 50

It matches on a typing judgment e : t, where ¢ is a program expression, and
t is the type of the expression. Because t is often the type expected by the
context, we also call it the expected type of e. Other arguments, written as
subscripts, can be passed to the constraint generation function. This is used to
pass the current scope, or types other then the type of ¢ itself. We often use the
syntactic sort name as a superscript, to distinguish between similar constructs
more easily. In the case of program terms that do not represent expressions,

19

3. CONSTRAINT LANGUAGE

constraint variables

constraint

type constraint

term

type
symbol

scope graph constraint

declaration
reference
scope

edge label
namespace
position

name

resolution constraint

hame set

subtyping constraint

ns
i,j
X,y

Cb—)

§,0,0,T

True (true)
CAC (conjunction)
cT | cY |C | cs

t=t (term equality)
d:t (type of declaration)
flt,...b0) |«

T

s —»d (declaration in scope)

r—»s (reference in scope)
s-1»s (direct edge)
ste>r (named edge)
d—>s (associated scope)
“xP |6

nsle

g

r—d (resolve name)
d~>s (associated scope)
IN (distinct names)
NCN (subset names)
N~N (same names)
"“D(s) (declared names)
"“R(s) (referred names)
"Y(s) (visible names)

“W(s) (reachable names)
t<:t (supertype definition)
t<it (subtype)

Figure 3.1: Syntax of the constraint language

20

3.1. Constraints for Static Analysis

and therefore have no type assigned to them, we simply match on the term,
written as [e] Z‘,’gs. Although not necessary to understand the rest of this section,
we present the complete constraint generation function for LMR in Figures 3.5
and 3.6 for reference.

Our example program is split up in three parts. For each part, we will
show the program, scope graph, and constraints, as well as a solution to the
constraints. To ease the presentation, we build op our example in such a way,
that we only depend on program parts we already presented. However, this is
not required by the constraint system.

3.1.1 Record definition

Our example starts by defining two record types, A and B. Record A has one
integer field £. Record B is declared as a subtype of record 4, and declares one
boolean field g. The constraints — shown below the program text — are num-
bered, and we will use those to refer to the constraints from the text. Figure 3.2
shows the program text and the scope graph at the top, and the constraints
and a solution at the bottom. We start by explaining the scope graph, then we
discuss the constraints for disambiguating names, typing field definitions, and
declaring supertypes.

Scope graph The name binding structure of the program is represented by
the scope graph, shown to the right of the program. The records correspond
to declarations in the program scope 1°. Each records has an associated record
scope — 25 for A, and 3° for B — which contains the field declarations. Since
record B is a subtype of record 4, the fields of A are imported into the record
scope of B with a named edge. We use the label S we introduced in the previ-
ous chapter.

For reasons of presentation, we show the scope graph using the graphical
notation, introduced in the previous chapter. However, the scope graph is
constructed from the following collected scope graph constraints:

1°—» A A —>2° £ —»2°
1° —» BY By —>3° gd —»3°
Af—»1° 3° S A%

In general, scope graph constraints represent edges in the graph, and are
written similarly to the graphical notation for scope graphs:

e The scope graph of a program is defined with scope graph constraints.
The constraints are written with the arrows from the graphical notation,
but use the notation of the calculus for the endpoints. Thus, s — x?
denotes a declaration x in scope s, x} — s denotes a reference in scope s,
s -1 s’ denotes an [-labeled direct edge from scope s to scope s, xP —> s
denotes the associated scope s of declaration x, and s > xf denotes an
I-labeled named edge through reference x.

21

3. CONSTRAINT LANGUAGE

1 record A, {
2 f, : Int
3}
4 record B, extends A, {
5 gs : Bool
6 1}
(a) Program (b) Scope graph
'D(1°) 1) ¢ = T+ Int
I'D(2%) (2) T, — Bool
51 3) 5y > AY
T1 = Int (4)
ID(3%) (5) Y = £5:Int
W(3°) (6) g5 : Bool
Af— 6)
Rec(BS) <:Rec(d;) (8) R = Afr> A7
g0)
T, = Bool (10) <r = {Rec(B3) <rRec(A7)}
(c) Constraints (d) Solution

Figure 3.2: Example of record definition

e The constraint syntax allows names to be classified by an optional name-
space. These are written in prescript, for declarations as “x?, and simi-
larly for references as “x7. We omit a (possible) namespace when it is
irrelevant in the context.

Name disambiguation There are additional restrictions on the declarations
and references in the program, that are not expressible in the scope graph.
First, all definitions in a program must have distinct names, which is specified
with ID(1°) (1). Similarly, we require that the fields of record A have distinct
name (2), and the same (5) for record B. Note that for records, we require that
all reachable field names are distinct. This is to ensure that no inherited fields
are shadowed. Generally, we can restrict sets of names in the following way:

e A name set N is a multi-set of names that corresponds to a set of decla-
rations or references. Given a scope s, we write “D(s) for the names of
the declarations in s, "R (s) for the names of the references in s. ") (s)
denotes all declarations that are visible in s, either because they are de-
clared in s, or because they are visible through one or more edge steps.
We write "W (s) for all declarations that are reachable through s, with-
out considering shadowing. If we want to match on all namespaces, we

22

3.1. Constraints for Static Analysis

omit the namespace, e.g. D(s) for all declarations in s regardless of the
namespace.

e Several constraints disambiguate names. A constraint of the form !N spec-
ifies that all names in N must be distinct, i.e. every x in N has v(x) = 1.
Given two name sets N; and N,, we can require that one is a subset of
the other, written as N; C N,. We use N; >~ N, as syntactic sugar for
N; € N, A N, C Ny, if both sets need to contain the same names.

Typing field definitions Field definitions are annotated with their type. The
type of field f is the constraint variable 7y, specified with £5 : 7y (3). Because
of the type annotation, 7, must be an integer type, specified with 7; = Int (4).
The type of field g is specified in a similar manner (9,10). In general, typing is
realized using the following constraints:

e Constraints of the form x? : t specify the type of a declaration. Such a con-
straint can occur multiple times for the same declaration, in which case
the types must be equal.

It should be noted that in the constraint generation for the A-calculus, the
introduction of an identifier x resulted in passing an extended environ-
ment I', (x : t) - ... to the recursive call. We use these declaration-type
constraints as the replacement for that typing environment.

e Constraints of the form t; = t, specify equality between terms. They are
the same as the equality constraints presented in the previous chapter.
To be able to use these equality constraints for typing, we require that
our types are built as terms.

Declaring supertype Our example declares B as a nominal subtype of A. To
get correct subtyping behavior, we need to make sure that a value of type B
can be used when a value of type A is expected. Using just a name to identify a
record type can lead to ambiguities if, for example, multiple modules define a
record of the same name. We therefore identify a record type using the unique
declaration for that record. For example, we use Rec(B}) as the type for values
of record B.

Before we can specify anything about the subtyping of B, we need to create
the correct type for its supertype. For that we need the declaration of A, which
we resolve using A} — J; (7). The resolved declaration is captured with the
constraint variable §;. Name resolution is part of the constraint language as
follows:

o A name resolution constraint, written as x7 — 4, specifies name resolution
of the reference in the scope graph. A resolved declaration is unified
with the constraint variable 6.

23

3. CONSTRAINT LANGUAGE

Using the declaration we can specify the fact that A is the supertype of B, with
Rec(BY) <:Rec(d;) (8). A nominal type hierarchy is specified as follows:

e A constraint of the form t; <: t, states that t, is a supertype of t;. The
types form a hierarchy, where every type can have at most one (direct)
supertype.

o A subtype constraint, written as t; <: t,, specifies that type t; must be a
subtype of type t,. That means that either the two types are equal, or t,
is a supertype — direct or indirect — of t;.

Solution to the constraint problem We can consider the constraints as a
problem, for which we want to find a solution. A constraint context A is a
solution to a constraint problem, if it is consistent with the constraints. A con-
straint context contains (1) a substitution ¢ that assigns a term to each con-
straint variable, (2) a type-map 1 that assigns types to declarations, (3) a scope
graph G, (4) a name resolution R that maps references to declarations, and
(5) a subtyping relation <.

We will give a general description of each component, following the pre-
sented solution to our example constraints. In the next section we give a pre-
cise formulation of the meaning of constraints and the notion of a solution, by
defining a satisfaction relation A |= C.

We already saw the concept of a substitution, as a solution to equality con-
straints, in the previous chapter. For example, we can solve (4) with a substi-
tution 7y — Int. In our constraints, variables do not only occur in equality, but
also in other constraints. For example, variable §; occurs in the name resolu-
tion constraint (7). In this case, name resolution determines that 6; — A} is a
valid substitution for é;. We define the substitution ¢ as follows:

e A constraint context A contains a substitution ¢, which is a mapping from
constraint variables to ground terms. A substitution ¢ is a solution if all
constraints are satisfied after application of ¢.

The type-map 1 maps declarations to types. For example, constraint (3)
can be solved by setting the type of £5 to Int in 1. Note that, to be consistent
with the constraints, we also need 7; — Int as solution to (4).

e A constraint context A contains a mapping ¢ from declarations to ground
types. It is a solution if for every constraint d : f, we have y(d¢) = t¢.
Note that we need to apply the substitution ¢ from the same context A
here, because 1 is ground, but variables can occur in the constraint.

We represent a scope graph G as a set of ground scope graph constraints.
Since our scope graph constraints map one-to-one to edges in the graph, we
assume that this set of constraints can trivially be interpreted as a scope graph.

e A constraint context A contains a ground scope graph G. The scope graph
is a solution to a constraint problem, if the set of edges in the graph cor-
responds exactly to the set of scope graph constraints. Note that we may

24

3.1. Constraints for Static Analysis

need to apply the substitution ¢ again, since variables can occur in the
constraints.

A name resolution R maps references to the declarations they resolve to.
Since name resolution can be ambiguous, R represents a resolution choice. In
our example, the only the reference Af resolves to A, resulting in a resolution
Af — AD.

e A constraint context A contains a resolution 'R, mapping references to
ground declarations. A resolution R is a solution if it is consistent with
the name resolution constraints, again after application of ¢.

Finally, we have a subtyping relation <. For our example, t <7 t for every
type t, and because of (8), Rec(BY) < Rec(BY).

e The constraint context A contains a subtyping relation <t on ground types.
The subtyping relation is a transitive closure over types that models a
forest, i.e. every type has at most one direct supertype. The subtyping
relation is a solution, if it is consistent with the supertype constraints, i.e.
if, for every constraint t; <: t,, t, is the parent of t; in the type hierarchy.

3.1.2 Record instantiation

The program in Figure 3.3 creates an instance of record B and assigns it to the
variable a. The declaration of the variable a has type 7¢ (11), which is fixed
(14) as a record type, determined by the record reference A (13). Similarly, the
type T; of the new expression is the record type for B (15-16). The type of the
expression is required to be a subtype of the type of a (12).

The new record instance must initialize all the fields of the record. Scope
5°, which imports the record scope, contains the field references to £ and g. We
require that all declarations in the record are initialized, by checking that the
referred names are the same as the imported field names (17). By requiring
that every declaration is referred to only once (18), we ensure that every field
is initialized only once. Each field is resolved to its declaration (19,23), and we
check that the types of the assigned expressions (22,26) are subtypes (21,25) of
the types of the declarations (20,24).

The solution is also presented in Figure 3.3. Recall that the solution to the
whole example program so far is the union of both solutions and scope graphs.
For example, the resolution of the references only works because scope 1° is the
same as scope 1° in Figure 3.2.

3.1.3 Field access

In Figure 3.4 a variable n is defined. We assign it the value of field f of record
instance a. To make the field access work, we will need the full machinery of
incomplete scope graphs, which we introduced in the previous chapter. Con-
straints (27) and (28-29) specify the type of n and a respectively. Resolution

25

3. CONSTRAINT LANGUAGE

7 def a, : A, =

8 new By {

9 f, =1,

10 gy = true

1 }

(a) Program (b) Scope graph

ap : T (11) R(6°) = V(6°) (17) gy — 6 (23)
T <' T (12) 'R(6%) (18) 06 1 T1p (24)
A7 — 03 (13) £§ — O5 (19) T3 < Tyo (25)
T =Rec(d;) (14) 05 Ty (20) Ty = Bool (26)
Bg — J, (15) Ty <:Tg (21)
T, ZRec(dy) (16) HiInt (22)

(c) Constraints

¢ = Tg+>Rec(A]) Ty Rec(AD) ¥ = aj:Rec(A])
Tg > Rec(BY) T+ Int
T — Bool 731 — Bool R = A~ A} Bf—BY
J3 — A7 04— B3 £5— £ glo— &5
d5 — £3 J6 — 85

(d) Solution

Figure 3.3: Example (cont.) of record instantiation

of the field £, requires the record scope of the type of a. The declaration cor-
responding to the record type is captured in dg (29), and we use a constraint
dg ~ G (30) to get the associated scope of the declaration. As we can see in the
scope graph, scope 6° imports the variable scope ¢. Once dg is resolved to A?,
and ¢ instantiated to 2°, we can resolve f to £5. The type of n is equal to the
type of the field, so we use 1, for the field type (32) without the need for an
extra equality constraint.

e An associated scope constraint, written as x? ~+ ¢, finds the associated
scope of the declaration in the scope graph, and unifies it with the con-
straint variable ¢.

26

3.1. Constraints for Static Analysis

7N\
a [
12 \1) 211
12 def n;; = a;,.f; .
f13 e S /\ G :)
(a) Program (b) Scope graph
211 T (27) ¢ = T+ Int 5y al
afy — 0 (28) Og > AD 89 > £5
d7:Rec(dg) (29) c s 28
1) 30
RSWQ (30) Y = =z :Int
f13 — Jg (31)
Bo : Tpo 32) R = ahrrag fz—f)
(c) Constraints (d) Solution

Figure 3.4: Example (cont.) of field access

27

3. CONSTRAINT LANGUAGE

[t]:=C
[DPP* = [DI&" A1D(s)
[module x; { D }%* := s—"xP A"xP —>s' A5’ L5 A [D]H
AD(s)
[import x;J% = xR s AL aR
[def bJ = [p
[record x; s { F }*! = s—"xP AP —>5' A [[s]]z‘s’,’iec(w?)

A [EF A W (')

s,s’

[extends x[5¢7 = "xf—»sAs 2> A K6
At <:Rec(d)
[[6]]??: “ = True
[xi = e]f™ = s— LA TAe:]V
[x; : ta = e]2M = s—"xPARP T A [[ta]]g?f" Ale: st
AN <ih
[x; : ta ;,iffl = 5, —» XD AXP T A Jta]
[Bool] Y™ = tZBool
[[Int]]gfm ;= t=1Int
[ta; —> taz]]?f " = t=Fun[n, 5] A [[ml]]ggf A [[mz]]g?: "
[[xi]]gf"" = *xf— s A*xF— 6 At =Rec(d)

Any s, T appearing free is assumed to be chosen fresh. The constraint
generation function can also be applied to a set of terms. In that case the
function is applied as [T]¥""" = Aer[t]E".

The parameters to the resolution calculus are the following:

£ := {LS,P}
L<l, = I<P S<P
E = P*(S*+T9)

Figure 3.5: Constraint generation for LMR
28

3.1. Constraints for Static Analysis

[n:
[true:

[false:

[x; :

[er @ ep:

[ey == ey:

[if e; then e, else e3:

[[fun (xi

[e1 ez
[letrec B in e:

[new x; { F }:

[[Wlth 31 do 62:

[x;

s ta) {e}:

tﬂexpr
tﬂexpr
tﬂgxpr

t]] expr

tﬂzxpr

t]] expr

t]] expr

t]] expr

tﬂexpr
tﬂexpr

tﬂzxpr

tﬂzxpr

- t]] expr

_ opftind
= €lss,

t = Int
t = Bool
t = Bool

xRS AXR S SNG

e : IS Alex]S At =ty
(where @ : Fun[t{,Fun[t,, 3]])

expr

t = Bool A [[81 : Tl]]sxp A\ [[32 TZ]]
A T3 = Tl[—|’l—2

expr

ey : Bool]S A ey : 1y
Aley : D] At £ 1N,

tyann

T A [[ta]]sﬂrl

Nt = Fun[Tl,TZ]

s e sAs —"xP AP
/\[[e Tz]]

expr

[[81 : Fun[Tl, t]ﬂixpr VAN [[62 : TZ]]EX}?T A %) S: T
s' Lo s A [B]YM AD(s') A [e:]

xR — s A xR 5 At = Rec(6)

RATR(S) ~ V(')
/\ Hljﬂjbznd

[ey :Rec(8)]V NS~ cAs Lo

Ns' —>fx
AR(s
As 2o g Aley: 0"

[e:Rec(8)]s” Ad~gAs Spg
/\ [[x t]]expr

xR — s, NxR =SNG
ANe:)" At <im

Any s, T appearing free is assumed to be chosen fresh. The constraint
generation function can also be applied to a set of terms. In that case the

function is applied as [T]2"* =

Aeer [

Figure 3.6: Constraint generation for LMR (cont.)

29

3. CONSTRAINT LANGUAGE

3.2 Constraint Semantics

In this section we want to make the notions from the previous section precise
by giving a formal semantics for our constraint language. Our semantics is
expressed as a satisfaction relation A |= C, defined by a set of inference rules
of the following form:

Pl Pn

AEC
A constraint context A satisfies a constraint C, written as A |= C, if all premises

P; to P, are true. The constraint context A, which we introduced in the previ-
ous section, is formally defined as follows:

DEFINITION 3.1 (Constraint context A). A constraint context A is a five-tuple

A=(¢,$,G,R, <1)

with the following components

@ : Var — Term (substitution)
¢ : Decl — Type (types of declarations)
g (scope graph)
R : Ref — Decl (resolution)
<7 : Type x Type (subtyping relation)

where the substitution ¢ is a multi-sorted mapping from variables to ground
terms, ¢ is a ground mapping from declarations to types, G is a ground scope
graph, the resolution R is a ground mapping from references to declarations,
and the subtyping relation < is a partial order on ground types.

We will describe the components of the constraint context —and their well-
formedness criteria — in more detail later in this section, when we explain the
semantic rules that use them. We write WF(X) to denote the well-formedness
predicate for a component of the context, and WF(A) for well-formedness of
the whole context. When we are only interested in a few components of the

context, we write A, X |= ... to make component X from the context explicit
without having to state all components. For example A, ¢ |= ... is equivalent
to (¢,) =....

The semantic rules for our constraint language are listed in Figure 3.7. We
will explain the first two rules here, and the rules for type checking, scope
graph construction, name resolution and subtyping in the next subsections.
The first two rules deal with trivial truth and conjunctions of constraints. Rule
C-TRUE states that every context A models True. Rule C-CONJ states that if
a context A models a constraint C;, and it also models a constraint C,, then it
models the conjunction C; A C,. Because of this general rule for conjunction, it
suffices to express the rest of the semantic rules in terms of single constraints.

30

3.2. Constraint Semantics

Constraint context

context A = (99,0, R <r)
substitution [Var — Term
declaration types ¥ Decl — Type
scope graph G
resolution R Ref — Decl
subtyping relation < : Type x Type
b <rt
non-strict subtyping relation <; = <t LB
b <rt
Constraint semantics AEC
A = True C-TRUE
): u () X; _>]-s cg (C-GRER)
AE=C AE=C . -
=G =G (C-Cony) A GEX—f
A |: Cl VAN C2 5
A (C-GEDGE)
tip=t . B
19 2?(P (C-EQUAL) A GEP s
A’q) |: tl = t2 5]
Fexeg (C-GNEDGE)
de) =t > y
Pldp) =t (C-TYPEOF) AG 1oy,
Ao pl=d:t s
X; —>] < g
P—>x, €@ = (C-GAssoc)
e (C-GDECL) AGExi—>]
A,g): 1V —» x]-
dp—>1° € =i
16 sp=i (C-AsSOC)

A Gl=d~s
Fgxi—=) R(x)=x de=x}
NG REX—d
Vx € [Ng]g.v(x) =1
A9,GEIN
[Ni9]g € [N2¢]g
A9, GEN SN,

(C-RESOLVE)

(C-DISTINCT)

(C-SUBSET)

o <rtp Vi(he<rt = thp<rt)

(C-SUPERTYPE)
A,q0,<T |: tl < tz

he <rtHhe
Ag<rFEt<ih

Nameset interpretation
D) = {x | € D)} [V(E)]g={x| Fg 20}
PREg = {x |2 €Rg(D)} [WE)g={x | Fgi®— 2P}

(C-SUBTYPE)

31

Figure 3.7: Semantics of the constraint language

3. CONSTRAINT LANGUAGE

3.2.1 Type Checking

An equality constraint t; = t, is satisfied by a context A with a substitution
component ¢, if application of ¢ makes t; and f, syntactically equal, i.e. if
tip = trp (rule C-EQUAL). The substitution is multi-sorted, so e.g. declaration
variables ¢ are mapped to declarations, and type variables T are mapped to
types. Applying the substitution twice should have the same affect as applying
it once. We define well-formedness of ¢ as follows:

DEFINITION 3.2 (Well-formedness of ¢). The substitution ¢ is well-formed,
written as WF(¢), if it is idempotent.

A declaration-type constraint d : t is satisfied by a context A, if the type of
d in the type-map ¥ equals ¢ (rule C-TYPEOF). Because variables can occur in
d, we apply the substitution ¢ before doing the lookup ¢(d¢). Similarly, we
apply ¢ to t before doing the comparison.

3.2.2 Scope Graph

Scope graph constraints are satisfied, if the scope graph G from the constraint
context contains an edge corresponding to the constraint (rules C-GDECL to
C-GAsSsOC). Since the constraint notation corresponds one-to-one with the
graphical notation for scope graphs, we represent G simply as a set of scope
graph constraints. We allow variables only as the target of a direct edge, which
is why we apply the substitution ¢ to s in rule C-GEDGE. Well-formedness of
a scope graph is defined as follows (Neron et al., 2015):

DEFINITION 3.3 (Well-formedness of G). A scope graph G is well-formed, writ-
ten as WF(G), if each declaration x? and reference x{ appear in exactly one
scope.

In this form, the rule allows the scope graph to be bigger than the set of
edges specified in the constraints. This is a problem, because a solver could
‘invent” edges to satisfy name resolution constraints. Therefore, we also re-
quire that the scope graph is the smallest scope graph that models the scope
graph constraints:

DEFINITION 3.4 (Minimality of G). A scope graph G from a constraint context
A, must be the smallest graph that models the scope graph constraints in C.

3.2.3 Name resolution

An associated scope constraint d ~- s is satisfied, according to rule C-ASsOC, if
the declaration d has an associated scope equal to s in the scope graph. Because
d may not be ground, we apply the substitution ¢ to it, before looking for an
associated scope edge in G. Similarly, we apply ¢ to s before testing if it is
equal to the found scope 7°.

Satisfaction of name resolution constraints is based on the decidable reso-
lution judgment I-g x* — x7 (rule C-RESOLVE). A constraint x;’ — d is satisfied

32

3.2. Constraint Semantics

if the reference x} resolved to a declaration x][?, and this declaration is equal to
d. Because d can be a variable, we apply the substitution ¢ in the equality test.

The name resolution calculus allows ambiguous resolutions, so there could
be multiple x? for which the resolution judgment is true. We want a reference
to resolve to the same declaration, even if multiple resolution constraints for
the reference exist. The choice of resolution is fixed by the resolution compo-
nent R. Because R must be consistent with the scope graph, well-formedness
of R is defined with respect to the scope graph from the same context as fol-
lows:

DEFINITION 3.5 (Well-formedness of R). A name resolution R is well-formed
with respect to a scope graph G, if
WFg(R) = Vxf. (R(xf) = x}) = bgaf x?)

Satisfaction of name disambiguation constraint depends on the interpreta-
tion of name sets. Namesets are multi-sets of names, corresponding to sets of
declarations or references. We write v(x) for the multiplicity of x in a name set.
The sets of declared and referred names in a scope s follow simply from the
sets of declarations and references in s. The set of visible names contains the
names of all the declarations that are visible in s, and is defined using the visi-
bility relation s — x? from the resolution calculus. The set of names reachable
from s includes shadowed names as well. It is defined using the reachability
relation s »— x? from the resolution calculus.

A distinct names constraint !N is satisfied if the names corresponding to
N all have multiplicity v(x) = 1 (rule C-DISTINCT). Since N might contain
variables, we apply the substitution ¢ to it before calculating the names. A
constraint Ny C N, is satisfied if the names corresponding to N; are a subset of
the names corresponding to N,. Again, we must apply the substitution to N,
and N,.

3.2.4 Subtyping

In the nominal subtyping model of the constraint language, types are modeled
as a forest. This means that every type has either zero or one supertypes.
Well-formedness of the subtyping relation <r is — following the set-theoretic
definition of a tree — defined as follows:

DEFINITION 3.6 (Well-formedness of <7). The subtyping relation <7 is well-
formed if it is a partial order that models a forest, i.e.

WEF(<7) =Vt ({t' |t <pt'} is totally ordered by <r)

Supertype constraints specify the subtyping relation. The subtyping rela-
tion <7 satisfies a supertype constraint t; <: t,, if ¢; is a strict subtype of ¢,,
and t, is the least supertype of t; (rule S-SUPERTYPE). Application of ¢ is nec-
essary, since the types may contain variables. We use the non-strict subtyping
relation <7, which simply adds reflexivity to the strict subtyping relation <r
from the constraint context.

33

3. CONSTRAINT LANGUAGE

Finally rule C-SUBTYPE states that a subtype constraint ; <: t; is satisfied
if t; is a non-strict subtype of t,. Again, the substitution needs to be applied,
because the types may not be ground.

Subtype constraints could unexpectedly be satisfied, by making the sub-
typing relation larger than is necessary to satisfy the supertype constraints. To
prevent this, we require the subtyping relation to be the smallest relation that
satisfies the supertype constraints:

DEFINITION 3.7 (Minimality of <7). The subtyping relation < must be the
smallest relation that satisfies the supertype constraints in C.

Now we have a formal description of the constraint language, and its mean-
ing in terms of the satisfaction relation. In the next chapter we will look at an
algorithm that calculates solutions that are sound with respect to this specifi-
cation.

34

Chapter 4

Solver

In this chapter, we present an algorithm to solve a constraint problem for the
constraint language defined in Chapter 3. The main idea of the solver is to
rewrite a constraint and an empty constraint context to a trivial constraint and
a context that satisfies the original constraint. In the first section we describe
the general setup of the solver, followed by the rules for solving type checking,
name resolution, and subtyping constraints. In the second section we will
discuss formal properties of the algorithm. We will show that the algorithm
terminates, and that it is sound with respect to the satisfaction relation. We
will also show that the algorithm is not complete, but that this has not been a
problem in practice.

4.1 Solver Algorithm

The solver solves a constraint C by constructing a constraint context A that
models that constraint according to our semantics. The algorithm is based
on a non-deterministic rewrite system on a pair (C;A) of a constraint and a
constraint context, which we call the solver state. The rules of our rewrite
system have the following form:

(C;8) — P> ((C; A))
if conditions

The rules rewrite the state (C;A) to a possibly changed state (C’;A’). Ex-
tra ‘if’ clauses make the rule conditional, and can introduce auxiliary defini-
tions used in the resulting solver state. If we only need to make a few com-
ponents of the context explicit, we will use the same A, X notation as in the
previous chapter. Constraints are matched module associativity and commu-
tativity of conjunction, and rules can be applied in any order. Note that a
conjunction match can easily be satisfied for a single primitive constraint, by
using C = True. Rewrite rules can make non-deterministic choices by return-
ing a positive, finite number of alternative states. However, since most rules
will be deterministic in this sense, we will omit the set-delimiters and write
(C;A) instead of {(C;A)}, if a single state is returned.

35

4. SOLVER

1: function SOLVE(C)

2 A=A

3 while C # True A 3(C;A) — R do
4: branch on every (C’;A") € R
5: (C;A) « (C;A)
6: end while

7 R <+ joinon (C; A)

8 if 31(C;A’) € R.C = True then

9: return A’/ > Satisfied
10: else

11: return L > Unsatisfied
12: end if

13: end function

Figure 4.1: Constraint solving algorithm

The algorithm, presented in Figure 4.1, starts from an initial constraint C
and a constraint context Ay. In the initial context Aj, all mappings are un-
defined on their whole domain and the scope graph is empty. The loop on
line 3 takes one rewrite step each iteration, until C = True or there are no
more possible rewrite steps. If multiple states are returned, we branch non-
deterministically on all of them. The resulting states of all branches are col-
lected in R by the join operation on line 7. If exactly one branch reduced the
constraint to C = True, we return the corresponding constraint context as our
final result. Otherwise we fail, since there was no solution, or there were mul-
tiple ambiguous solutions.

Now we will explain the rules of our rewrite system. We will follow a sim-
ilar structure as in Chapter 3, starting with an explanation of the general rules
in this section, then discussing the rules for type checking, name resolution
and subtyping in the next subsections. The trivial constraint True is satisfied
by any context, and it can therefore just be eliminated without making any
changes to the context (rule S-TRUE).

41.1 Type Checking

The rules for type checking constraints are presented in Figure 4.2. Equality
constraints are solved by first-order unification. Rules S-TRIVIAL to S-DECOMPOSE
are the same as the rules from the unification algorithm ¢/, presented in Fig-

ure 2.10. We have no explicit rules for error cases, such as in /. Any error case
will result in an unsolved constraint, causing the algorithm to return L. In rule
S-ELIMINATE, the substitution is applied to the solver state, i.e. (C;A)c. This
means that the substitution is applied to the constraint C and all the compo-
nents of A. Since we defined application of a substitution to another substi-
tution as a composition, the resulting ¢o is actually the composition of ¢ and

.

36

4.1. Solver Algorithm

(C;AY — (C;A)

(True AC;A) — (C;A) (S-TRUE)
(tZ=tAC;A) — (C;A) (S-TRIVIAL)
(t=aANCA) — (a =t ANC;A) i
if 1 ¢ Var (S-ORIENT)
(0 =t AC;A) — (C;A)o
if o & vars(t), (S-ELIMINATE)
o:={a—t}

(F(tr, o ty) = f(H),. t) ANCAY — <<

T>-

t; = t§> AC;A)
(S-DECOMPOSE)

(xP t ANCAP) — (CA{(x7,) U Y)
if x ¢ dom ()
(XXt ANCA YY) — = ACAY)
if p(x2) = ¢

(S-TYPEOF1)

(S-TYPEOEN)

Figure 4.2: Constraint solver rewrite rules: type checking

When solving type-of constraints, like x? : ¢, we can distinguish two cases.
Either this is the first time we encounter a type for this declaration, or we have
seen a constraint for it before. In the first case, we can simply add the type
for this declaration to the type map ¢, such that ¢(xP) = t. In the second
case, we need to make sure that the type t in the constraint is equal to the
type ¢(xP) in the type map. Note that, although our semantics are defined
in terms of a ground type map ¢, the types in ¢ can contain variables in an
intermediate solver state. Therefore, we do not check equality directly, but
generate an equality constraint between the type from the constraint and the
type from 9.

4.1.2 Name Resolution

We will now explain the rules for scope graph construction, name resolution,
and name disambiguation constraints, presented in Figure 4.3.

Scope graph construction Since we represent a scope graph as the set of
edges, rules S-GDECL to S-GASSOC are straightforward. When a scope graph
constraint is encountered, we add it to G. The conditions on the rules pre-
vent us from adding a declaration or reference to multiple scopes, importing
a reference that is not in the graph, or associating multiple scopes with a sin-

37

4. SOLVER

Solver rules (C;A) — (C;A)

(i —> xP A C;A,G) — (CA,{i5 — 2P} UG)
if Ass—»af€g

(xf = PACB,G) — (C:b, {xf = P} UG)
if As.xf—>seg

(> sANCA,G) — (CA{° »s}UG) (S-GEDGE)
(i° Lo x? AGC;A,G) — (CA,{i° Lo x]F-{} ug)

(S-GDECL)

(S-GREF)

- Els.x]R Cased (S-GNEDGE)
x?—> P ACA,G) — (CA,{x —> U
(xP = j g) ’ <£S xp{—|>s e]Q} g) (S-GASSOC)
M)
D .y . L .
(7 s NGA,G) — (s = ANCA,G) (S-ASSOC)

if xp —=j°€g

(ﬁHMAQAQR%H{MéﬁACAgﬂﬁﬁHURWﬁGD}
if CNCY =@, xf ¢ dom(R),
ID.RESg(xF) =D, |D| >0

(= dNCD,GR) — (d=x} NC;A,G,R)
if R(xf) =P

]
(INAGC;A,G) — (C:A,G)
if CNCY =@, vars(N) =@,
IX.Nsg(N) = X,
Vxe X.v(x)=1

(N; SN, AGA,G) — (CA,G)
if CNCY =0,
vars(N;) Uvars(N,) =@, (S-SUBSET)
3X,.Nsg(N) = X;,
3X,.Nsg(Ny) = X, X; € X,

(S-RESOLVET)

(S-RESOLVEN)

(S-DISTINCT)

Nameset calculation

Nsg(“D(#)) :={x | x} € D(i*)}
Nsg("R()) := {x | xf € R(*)}
Nsg("V(%)) := {x | x} € D NENV¢[0,Q](i*) = (T, D)}
Nsg("W(i®)) := {x | x} € D NENV¢[Q,2](i*) = (T, D)}

(using the empty label order <)

Figure 4.3: Constraint solver rewrite rules: name resolution
38

4.1. Solver Algorithm

gle declaration. Note that the only rule that allows a variable to appear in
the scope graph, is rule S-GEDGE. This is of course, because the resolution
algorithm only admits graphs where variables appear as the target of a direct
edge.

Name resolution An associated scope constraint is solved using a simple
lookup in G. To be able to carry out the lookup, the declaration has to be
ground. If s is a constraint variable, we want it to be unified with the discov-
ered scope j°. Therefore, we generate an equality constraint instead of directly
testing for equality.

Name resolution constraints are solved using the name resolution algo-
rithm presented in Figure 2.6. Similar to the type-of constraints, we have cases
for the first time we encounter a reference, and for subsequent times. When
we resolve a reference, we add the resolved declaration to R. If the reference
is not in R, we need to resolve it (rule S-RESOLVE1). We need to make sure
that we do not invoke the resolution algorithm if new edges can still be added
to the scope graph. A new edge could easily invalidate a resolution, e.g. by
introducing a declaration with a shorter path. The condition C N CY = @ re-
quires that there are no scope graph constraints left in C, and therefore no new
edges could be added after solving the name resolution constraint. Although
all the edges are in G, it may still contain variables, resulting in an unknown
resolution L. We write 3D.RESg(x?), to ensure D is a set of declarations, and
not L. We require that the reference resolves to at least one declaration, but it
can resolve to multiple. This is where we introduce a non-deterministic choice
between the possible resolutions. Every solver state we return picks one of the
declarations, and fixes this choice in R. We also introduce an equality con-
straint between d and the declaration, to allow unification if d is a variable. If
the resolution R already contains a resolved declaration for the reference, we
simply generate the equality constraint without invoking the name resolution
algorithm (rule S-RESOLVEN).

Name disambiguation Solving name disambiguation constraints involves
calculating name sets. The rules for calculating name sets are presented in
Figure 4.3. The sets of declared and referred names in a scope are easily cal-
culated from the declarations and reference of the scope. For the set of visible
names, we use the ENV function, which calculates the set of visible declara-
tions in a scope. To get the correct set, we need to invoke it with the same
parameters as a top-level RES does, i.e. with seen imports I = @ and seen
scopes S = @, and the regular expression £. There is no separate function that
calculates the set of reachable declarations. However, the difference between
reachable and visible declarations is, that the latter are restricted to the decla-
rations with the shortest path. By using an empty path order, where no step,
not even the builtin D(-), is smaller than any other step, we can use the same
environment calculation. Because no path will be shorter than any other path,
the reachable and visible sets will be the same. To solve distinct names con-
straints, we just check that every name in the names calculated for N appears

39

4. SOLVER

(C; Ay — (C;A)

(h <ty AC A, <7) — (C;A, <)
if vars(t;) Uvars(t,) =Q,
ty ¢ dom(<r), ts £1t;,
<r={tt) | t<rt,t, <pt'} U<y
(S5-SUPERTYPE)

(1 <tHh NG A, <7) — (CA,<7)

if vars(iy) Uvars() =@, t <r & SUPTYD)

Figure 4.4: Constraint solver rewrite rules: subtyping

only once, i.e. the multiplicity v(x) =1 (rule S-DISTINCT). Equally, a subset
constraint is solved if the names calculated for N; are a subset of the names
calculated for N, (rule S-SUBSET). For name set calculation we have the same
requirements as for name resolution, i.e. that all the graph edges are present
before the algorithm is invoked.

4.1.3 Subtyping

Supertype constraints t; <: t, are solved by building the subtyping relation
<. We have seen in the semantics that the relation must be a forest, and
that t, must be the smallest supertype of t;. The condition ¢, £ t; of rule
S-SUPERTYPE prevents us from creating a cycle. The condition ¢; ¢ dom(<7)
ensures that we only add one supertype for t;. Together they make sure that
the relation models a tree, and that ¢, will be the smallest supertype. We also
need to ensure that the subtyping relation <7 is transitive. Justadding t; <7 f,
is not enough, because t; might have subtypes and t, might have supertypes.
Therefore, we add a relation between every t <r t; and every t, < . Subtype
constraints t; <: t, are solved, if t; is a subtype of ¢, in the subtyping relation
(rule S-SUBTYPE).

4.2 Formal Properties

In this section we discuss several formal properties of the algorithm we intro-
duced. We start with soundness of the solver with respect to the semantics,
then we show termination, and finally we discuss several examples of incom-
pleteness.

4.2.1 Soundness

The algorithm should only give an answer if the answer is indeed a solution,
that is, if it satisfies the constraint. Therefore, we define soundness as follows:

40

4.2. Formal Properties

THEOREM 4.1 (Soundness of SOLVE). The algorithm is sound, if the result of
SOLVE is well-formed and satisfies the constraint according to the semantics, i.e.

VCA.(SOLVE(C) =A = WE(A) AA=C)

Before we can prove soundness of the algorithm, we need to introduce some
auxiliary definitions and lemmas. First we define full instantiation of the
solver state as follows:

DEFINITION 4.2 (Full Instantiation of (C;A)). We say a constraint C and con-
text A are fully instantiated, i.e. (C;A, @)l ,if (C;A,9)p = (CA, ¢).

This gives us two useful properties. First, the substitution in the constraint
context is idempotent, i.e. applying it multiple times will have the same effect
as applying it once. Second, any variable that occurs in the domain of the
substitution, does not occur in C.

COROLLARY 4.3. If (C;A, ¢) 1., then ¢ = ¢, therefore ¢ is idempotent.
COROLLARY 44. If (C;A, ¢) , then vars(C) Ndom(¢) = @.

Let C N CY denote the set of subterms of C from the sort CY. We define well-
formedness of the solver state, consisting of several conditions. First, the con-
straint context must be well-formed, as defined in Section 3.2. Second, the
state must be fully instantiated. Last, if the constraint C contains scope graph
construction constraints, no names must be resolved yet, because the edges
resulting from the remaining constraints, could invalidate those resolutions.

DEFINITION 4.5 (Well-formedness of (C;A)). We say a solver state consisting
of a constraint C and a context A is well-formed, if

WE((C;A,G,<71)) =WF(A,G,<7) ANMCA,G,<r)l
A (CﬂCg £ @ = dom(R) :@)
Now we define a preorder C on constraint contexts, which is used to ensure

that the solution grows monotonically during solving. Let X|p be the mapping
X restricted to the domain D. Our preorder is defined as follows:

DEFINITION 4.6 (Context preorder C). For contexts A, A’, we define a preorder
ACA as
(99,6 R,<r) C(¢' ¢, G R, <t)=30.(gpo=¢'

N IPO— = lpl|dom(lp)
NGorC g’
AR = R/‘dom(R)

N<p= <,T|dom(<T))

Sometimes we want to make the substitution ¢ explicit, in which case we write
A C, A instead.

41

4. SOLVER

Using these definitions, we can now state that for every reduction step, three
properties should hold. The first states that well-formedness of the solver
state is preserved. The second states that the context before the reduction is
included in the context after reduction. The last one states that if there is a re-
duction that ends with C = True, and its context models the output constraint,
it models the input constraint as well.

LEMMA 4.7 (Invariant of —). The following invariant holds for the reduction:

YCAC'A. (<C;A> — (A =

(WF((C,‘A)) - WF((CI;A,>)) (WF)
AAC A (Sub)
AVA" ((C;A) —* (True;A”) AWE((C;A)) (Star)

AN C = A" ()

Transitivity of implication and C give us the following useful properties for
multi-step reductions, which we will use in the proofs of (Star):

COROLLARY 4.8. Forany multi-step reduction, Transitivity of implication, and (WF)
give us

VCAC'A'. ((C;A) —* (C';A") A\WE((C;A)) = WEF((C’;A")))
COROLLARY 4.9. For any multi-step reduction, transitivity of C, and (Sub) give us
VCAC'A . ((C;A) —* (C;A') = ACN)

The proof of Lemma 4.7 by case analysis can be found in Appendix A.1. Now
we can state and prove soundness for multi-step reductions.

LEMMA 4.10 (Soundness of —). The reduction is sound, i.e.
VnCAA". ((C;A) —" (True; A”Y AWF((C;A)) = A" |=C)

Proof. By induction on the length 1 of the reduction.

(1)1. AsSUME: 1. (C;A) —° (True; A”)
2. WE((C;A))
PROVE: A" EC
PROOF: Because of the 0-step reduction, we know that C = True AA = A".
Therefore A” |= C follows from rule C-TRUE.
(1)2. ASSUME: 1. (C;A) —"*1 (True; A”)
2. WE((C;A))
IH. VC'A'A". ((C';A") —" (True; A”) AWE((C5A")) = A" = C')
PROVE: A" [EC
(2)1. 3C'N. ([(C;A) — (C;A) D A[(C; A7) —" (True; A”)|)
PROOF: By assump. (1)2-1 and property of reductions.
(2)2. WE((C’;A))

42

4.2. Formal Properties

PROOF: By assump. (1)2-2 and (WF) of (2)1-1.

(2)3. N"E=C’
PROOF: By assump. (2)1-2, (2)2, and IH.
(2)4. QED.
PROOF: By (2)2, assump. (2)1-2, (2)3, and (Star) of assump. (2)1-1.
(1)3. QE.D.
PROOF: By (1)1, (1)2, and the principle of induction. O

Given all the above, we can now prove soundness of the solver.

THEOREM 4.1 (Soundness of SOLVE). The algorithm is sound, if the result of
SOLVE is well-formed and satisfies the constraint according to the semantics, i.e.

VCA.(SOLVE(C) =A = WF(A)AA=C)

Proof. For the initial empty context Ay and any constraint C, it holds that
WE((C;Ag)). The algorithm returns A” only if (C;Ay) — (True; A”). We con-
clude by application of Lemma 4.10. O

We have not yet developed a formal proof for the minimality criteria on the
scope graph and the subtyping relation. We believe our algorithm does indeed
produce minimal solutions, but a proof is subject of future work.

4.2.2 Termination

We say that the solver is terminating, if it halts for every input constraint C.
THEOREM 4.11 (Termination of SOLVE). VC.(SOLVE(C) terminates).

Before we can prove this, we will prove termination for multi-step reductions.

LEMMA 4.12 (Termination of —). VCA. ((C;A) —* ... terminates).

The proof by case analysis can be found in Appendix A.2. Using this we can
prove termination of the solver.

THEOREM 4.11 (Termination of SOLVE). VC.(SOLVE(C) terminates).

Proof. From Lemma 4.12 we know that every multi-step reduction terminates.
This means our algorithm terminates, if only a finite number of branches are
created. The only rule that creates branches is rule S-RESOLVEL. The scope
graph is finite, so every reference resolves to a finite number of declarations.
Therefore, every time rule S-RESOLVEL1 is applied, a finite number of branches
is created. Given that there are also finite references in the scope graph, and
the rule is only applied once for every reference, the total number of branches
will be finite. Hence, the algorithm terminates. O

43

4. SOLVER

x5 @—»ﬁ»@ 5 xf

S~ - cr2°
x; l/\g\/)

(a) Constraints (b) Scope graph (c) Possible solution

Figure 4.5: Example of incompleteness

x? — (51 (51 — X?
8~ ¢1 S = Y1
Y3 6 61> 2°
0y~ G Gp > 1°

(a) Constraints (b) Scope graph (c) Possible solution

Figure 4.6: Example of incompleteness

4.2.3 On Completeness

Completeness states that, if a solution exists for a constraint C, the algorithm
will find it:

DEFINITION 4.13 (Completeness of SOLVE). Algorithm SOLVE is complete, if
the algorithm finds a solution for every C that is satisfiable:

VCA.(A|=C = (3A.SOLVE(C) = A))

Unfortunately our algorithm is not complete. As itis now we see two major
reasons for this incompleteness, namely incomplete scope graphs, and lack
of subtype inference. We will give some examples for the name resolution
case. The first example is presented in Figure 4.5. The solver needs to resolve
x5 to the declaration x} in the parent scope, to be able to find the value for
¢ and solve the constraints. Because of the import g, which could shadow
the declaration in the parent, the resolution fails, and the constraints remain
unsolved.

In our second example, presented in Figure 4.6, there is a mutual depen-
dency between the references. They can only be resolved through the variable
scope import, which can only be instantiated if the references are resolved.
This example is arguably less realistic, but also harder to solve than the first
one. In the first example there existed a resolution path, even though it was
disregarded because it might be unsafe. In the second example, there is no path
at all, and the algorithm would need to resort to guessing variables to solve it.

44

4.2. Formal Properties

Despite the fact that these incomplete cases exist, we have not run into
them in practice. We expect that for many practical programming languages,
this incompleteness will not be a problem. Testing this hypothesis is the subject
of future work.

45

Chapter 5

Evaluation

We evaluated our approach with respect to expressiveness and realizability.
To evaluate expressiveness, we defined the static semantics of two languages
from different paradigms that are well-known in the literature. The first lan-
guage is PCF, a functional language with integer base type. The second lan-
guage is Featherweight Java, an object-oriented language with inheritance. To
evaluate realizability, we implemented the solver, and static analysis for the
languages LMR, PCF and Featherweight Java in the Spoofax workbench. In
the first section we will introduce the syntax and important features of PCF,
and explain how we expressed its static semantics using our constraint lan-
guage. In the second section we do the same for Featherweight Java. In the
last section we discuss how we implemented the constraint solver in Spoofax,
and where this implementation differs from the theoretical presentation.

5.1 Static Semantics of PCF

PCF is a small functional language with integer base types, first introduced by
Plotkin (1977). We first describe the syntax of the language, and then discuss
the constraint function for static analysis.

expr = id|n|E® E|exprexpr

| fun id -> expr|fix id -> expr

| ifz expr then expr else expr

| let id = expr in expr

Numerical operators are drawn from the set & € {+,—,*,/ }.
Type := Nat | Type — Type

Figure 5.1: Syntax of PCF

47

5. EVALUATION

[fun x; -> e:t], = s EpsAns—>xPAXP g Ale:]y
ANET =T
[fix x; > e:t], = - EpsAnsd—> Ao
Ae:t =Bl \t=(H = 1) = (4 —)
[let x; = e; in ey:t]y, = s EpsAs X AXP:TAfe; T Ales:]y
lerey:t]y = [er:t—=t]s A ey : T]s
[x:t]y == xf—>sAxf—INS:t
[n:t], = t=Nat
[e, ®ey:t]s := t=NatA[e:Nat]s A [e,: Nat],
[ifz e; then e, else e3:t]; = [e;:Nat], Alfey:t]s Afes:t]s

Any s, 6 or T that appear free in the constraints, are assumed to be fresh.
Numerical operators are drawn from the set & € {+,—,*,/}.

Figure 5.2: Constraint generation function for PCF

5.1.1 The Language

The syntax of LMR is presented in Figure 5.1. The language features the fol-
lowing constructs:

e The language features lexical scoping of identifiers. New declarations are
introduced by fun, fix, and let expressions. Declarations in nested
scopes shadow declarations with the same name from outer scopes.

e Abstractions are created with the fun and fix expressions. The fixpoint
expression enables recursion, and expects its argument to be a function.
Function application is written as juxtaposition of expressions, as in e; e,.

e The language provides integer literals, as well as arithmetic operations
addition, subtraction, multiplication, and division. A conditional ifz
branches on an integer argument, evaluating the then branch if the inte-
ger is zero, and the else branch otherwise. The type of the branches is
free, as long as it is the same for both.

5.1.2 Constraints

We specify the static semantics of PCF using the constraint generation func-
tion presented in Figure 5.2. The constraints generated for LMR programs are
similar to the constraints we have seen for LMR expressions:

e The scopes in the scope graph for LMR programs will form a tree, con-
nected by parent edges, that models the lexical scoping. The constraint

48

5.2. Static Semantics of Featherweight Java

program = class*
class := class id extends id { fdecl" init mdecl® }
fdecl = id id;
init := id(arg*) { super(id®); finit" }
finit = this.id = id;
mdecl := id id(arg*) { return expr; }
arg = id id
expr = id|expr.id |expr.id(expr*) | new id(expr*) | (id)expr
Type := C(decl) | I[Type] | M[Type®, Type]

Figure 5.3: Syntax of Featherweight Java

generation function passes down the current lexical scope s. The rules
for fun, fix, and let all introduce a new subscope s’ of scope s, and add
a declaration in the new scope s’. References are resolved in the current
lexical scope.

e The types of PCF are the base type Int of integers, and the function type
t; — t,, where t; is the argument type, and t, the result type. The type
equality constraints that are generated are the same as the constraints we
have seen for the expressions in LMR.

5.2 Static Semantics of Featherweight Java

Featherweight Java is a small object-oriented language, introduced by Igarashi
et al. (2001). The language is a lightweight version of Java, aiming to be a
“minimal core calculus for modeling Java’s type system.” It features classes
with fields, methods, and class inheritance. We first introduce the syntax of
the language, and explain the different language constructs. Then we discuss
how we model its static semantics using our constraint language.

5.2.1 The Language

The syntax of Featherweight Java is presented in Figure 5.3. The language
features the following constructs:

e A Featherweight Java program consists of zero or more class defini-
tions. Classes form a nominal class hierarchy, and declaring the superclass
with extends is required. We assume the existence of an Object class as
the root of the type hierarchy. Cyclic inheritance is not allowed.

49

5. EVALUATION

e A class defines fields, which are explicitly typed by prefixing it with a
class name. Field names must be distinct, and cannot shadow fields from
the superclass.

e Every class defines exactly one constructor, which has the same name as
the class. The constructor takes a number of explicitly typed arguments.
The arguments are passed to the constructor of the super class in a super
call, and used to initialize the class fields. The constructor must initialize
every class field exactly once.

In the original presentation of Featherweight Java, the constructor argu-
ments had to match the names and order of the superclass constructor
and the fields exactly. As we will explain later, we drop this restriction
in our specification of the semantics.

e A class defines methods, which have explicitly typed parameters, and an
explicit return type. The body of the method is one expression, which
must be a subtype of the explicit return type. Method names must be dis-
tinct, and cannot shadow methods from the superclass. Inside a method
body, there is an implicit variable this available, that refers to the object
the method is invoked on.

e New objects are created using the new expression. The number of expres-
sions passed to new must match the number of constructor parameters of
the class. The expression types must be subtypes of the specified param-
eter types.

o Access to methods and fields is provided by dot-notation on an object. In
case of method invocation, the number of passed expressions must match
the number of method parameters, and the expression types must be
subtypes of the defined parameter types.

e The type of an expression can be forced by using a cast, written as (x)e,
where x is the class name one casts to.

5.2.2 Constraints

The constraint generation function for Featherweight Java is presented in Fig-
ures 5.4 and 5.5. We will explain how we model name binding and type check-
ing for class definitions, fields, constructors, methods, and expressions.

Class definitions A definition of a class x introduces a new declaration “x? in
the global scope. Declarations and references for classes use the namespace C.
For every class we introduce two new scopes. The first is the class scope s,
associated with the class declaration. The class scope will contain the decla-
rations of the constructor, and the fields and methods of the class. Overload-
ing or overriding is forbidden in Featherweight Java, therefore we require all
reachable definitions in the class scope to be distinct. The other scope is the
lexical scope s’ of the class body, which will contain the declaration for this.

50

5.2. Static Semantics of Featherweight Java

[y = [Cl
class x; extends y; { class
|l EI M]] = s—»cxi/\cxi—|>sc/\cyj—>s
} s Ase =Y A Y= S AW (s)
AC(YP) <:C(6) Ns' Ews
As' —» "this A Vthis® : C(“xP)
AFEe ATy A M
[x; y; s(ilse:l = s> YA [x] ANYT 0T
[x;CA) { super(E); F }I¥ . = xZyAs,—'xP AN'zF—>s,
As' Eps A [[A}]Z,r% A'x? It
Nz S NG T[] ATE: ISP
AT <o A RIS AYD(s)
AM"R(s.) NVR(se) =~ "D(s,)
[this.x; = y]-]}éiﬁit = xS ANXF =N
Ay ol A<
[x; y;(A) { return e; e = se—>"y; Ns' B s A o
A [[A]]”Sz,rgr2 Ae:wla" A <im
AP M, 1] AD(s)
[iy 55 = s =y ADDE™ A YD

Any s, T, or § appearing free are assumed to be chosen fresh. The con-
straint generation function can also be applied to a list of terms. In that
case the function is applied as [T]X" = A,cr[f]X™. Variables in a list in-
vocation can be starred, as in [T zlolfi*. This means a fresh 7 is assumed for
every invocation. We can refer to those variables as a list, using the same
notation 7.

The parameters to the resolution calculus are the following:

L = {sP}
L<l, .= S<P
E = P (S

Figure 5.4: Constraint generation function for Featherweight Java

51

5. EVALUATION

[x;j: t]s?" = xi—esAAR OGNSt
Je.x; t]sF = [[e]]zf‘g(rél) Aoy~ cAs Lo cANVx;—» s

AVX$|—>52A52:t

fe.x;(E) : t]s"" = [[e]]zxg(ré]) ANép~¢cNANs' Lo cN'xj—»§
AR 8y A Sy [T A [E T3S
AT <1
[new x;(E) :t]s7 = “xj—»sAs > AR Ax — 6 At=C(0)

N'x;—p 8" N'xR 8y A6y I

ANE: G Aty <imy

[(x)e: 127 o= [l Ao 15
[lZ™ = e s AR O A EEC(0)

Any s, T, or § appearing free are assumed to be chosen fresh. The con-
straint generation function can also be applied to a list of terms. In that
case the function is applied as [T]X" = A,cr[t]P". Variables in a list in-
vocation can be starred, as in [[T]]i"ﬁf This means a fresh 7 is assumed for
every invocation. We can refer to those variables as a list, using the same

notation T*.

Figure 5.5: Constraint generation function for Featherweight Java (cont.)

The semantic type of a class is written as C(d), where d is the class decla-
ration. We give this the class type of the class being defined, and specify the
subtyping using a supertype constraints. We will assume that the scope graph
includes a declaration and class scope for the special type Object.

Fields Field definitions introduce new declarations in the class scope s.. Dec-
larations and references for fields use the variable namespace V. Fields are ex-
plicitly typed by an annotated class name. The class names are resolved in the
lexical scope s, and we assign the corresponding class type to the field decla-
ration.

Constructor The constructor introduces a declaration with the same name as
the class, but using the namespace I. The constructor name should be the same
as the class name. We therefore expect the class name as an argument y, and
generate an equality constraint between y and the constructor name x. The
constructor introduces a new lexical scope s, which contains the declarations

52

5.2. Static Semantics of Featherweight Java

of the constructor parameters. Because referring to this is not allowed in the
constructor, the outer scope of the constructor is the outer scope of the class,
not the scope of the class body. Constructor arguments are again explicitly
typed, and use the V namespace. The type of a constructor is written as I[t*],
where t* is the list of argument types.

To be able to invoke the super constructor, we expect the name of the su-
per class as an argument z. We create a reference 'z® to the constructor of the
superclass. To type check the super call, we get the type I[1,] of the super con-
structor, as well as the types 73 of the expressions that we pass to it. We check
that the expression types are subtypes of the expected parameter types. We as-
sume a simple extension to the solver, that interprets a subtype check between
two lists of types as a list of subtype checks. The constraint will be satisfied if
the two lists have the same length, and each type in the first list is a subtype of
the type at the same position in the second list.

To initialize a field, we resolve it in the class scope, and capture its type
in 71. We use 1, for the type of the expression, and specify that the expression
type must be a subtype of the field type. Note that the syntax of Featherweight
Java only allows references to be passed to super, or to initialize fields. How-
ever, our constraint generation function would not need to change if we al-
lowed arbitrary expressions instead. We use name disambiguation constraints
to ensure that all fields of the class are initialized exactly once.

Methods Methods are declared in the class scope s, using the namespace M.
A method definition introduces a new scope s’ for the method body, whichis a
subscope of the scope of the class body. Method arguments are declared scope
s’. The fact that the scope of the method body is a subscope of the scope of
the class body, ensures that the special variable this is available in the method
body. We use the type M[7;, 7;] for methods, where 75 is a list of parameter
types, and T is the return type.

Expressions There are five expression forms in Featherweight Java: variable
references, object creation, field access, method invocation, and type casts.

e Variable references introduce a reference in the current scope s. The type
of the reference is made equal to the type of the declaration it resolves to.

e Objects are created by a new expression, which invokes the class con-
structor. To create a new x, a new scope s’ is created, which imports the
class scope of x. We create a reference for the constructor of x inside that
scope, and use that to get the constructor type I[1;]. We require that the
types of the expression we pass to the constructor are subtypes of the
types of the constructor arguments.

e Method invocation and field access are specified similarly to record field
access for LMR. We assume the expression has a class type C(¢é;) with
an associated scope ¢. Scope ¢ is imported into a new scope s’, in which
we resolve the field or method name. In case of field access, the whole

53

5. EVALUATION

expression gets the type of the field. In case of a method call, the ex-
pression gets the return type of the method. We check that the types of
the expressions passed as parameters to the method, are subtypes of the
specified parameter types.

e A type cast changes the static type of the sub-expression, to an explicitly
specified one. The type of the cast expression is simply the type corre-
sponding to the specified class name x. Although we ignore the type of
the sub-expression e, we do generate constraints for it, since we still want
to catch type errors that can occur there.

Differences with original presentation There are two differences between
the original presentation of the Featherweight Java semantics, and our specifi-
cation:

e The original presentation is very specific about the order and names of
the constructor parameters. The first parameters should have the exact
same names and order as the parameter names for the super construc-
tor, and should be passed directly to the super call. The parameters after
that should match exactly the names and order of the fields defined in the
class, and should be used to initialize those fields. This made the typing
rules very simple to write down. In our constraint-based formulation,
this restriction would not simplify the constraint generation, and is ac-
tually impossible to express. We can only reason about declaration and
references as sets, and have no information about the order they appear
in the code.

e The original presentation differentiates between three different possible
scenarios for casts, (1) an upcast if the cast is to a supertype of the ex-
pression type, (2) a downcast if the cast is to a subtype of the expression
type, and (3) a stupid cast otherwise, since the cast could never succeed
at runtime. The typing is the same in all three rules, but in the last case
it generates a warning. We have only one rule, and lose the possibility
of a warning. Expressing the three rules is currently impossible in our
constraint language, because we do not support disjunctions.

5.3 Prototype Implementation

We implemented the constraint solver from Chapter 4 in the Spoofax language
workbench. We used this implementation to implement static analysis for the
languages LMR, PCF, and Featherweight Java. We will first discuss the current
state of static analysis in Spoofax, and some of its shortcomings. Then we will
show how our approach addresses these shortcomings. Finally we explain the
solver implementation, and discuss how it differs from the theoretical presen-
tation we have given.

54

5.3. Prototype Implementation

5.3.1 Static Analysis with Spoofax

Spoofax (Kats and Visser, 2010) is a language workbench, currently developed
at the Software Engineering Research Group at the TU Delft. It provides do-
main specific languages for specifying syntax, name binding and type check-
ing, and dynamic semantics. From these specifications it produces plugins for
the Eclipse IDE, allowing easy and immediate integration of the language in a
familiar development environment.

Name binding is specified using the NaBL language (Konat et al., 2012),
and type checking using the TS language. Both languages generate name res-
olution and type checking code, which is executed using a generic Task En-
gine (Wachsmuth et al., 2013), which provides some incrementality. Name
resolution and type analysis are executed simultaneously, which allows mu-
tual dependence between the two. It is therefore possible to express forms of
type-dependent name resolution, and type-based disambiguation.

Although NaBL and TS have proven useful in many projects, their ad hoc
design and lack of formal basis are a problem. For example, NaBL has no
clearly defined semantics, and some of its features are the result of the imple-
mentation more than of language design. This makes it unnecessarily hard to
understand complex sets of rules. TS lacks support for parametric polymor-
phism or generics, ruling out important classes of languages. Furthermore, the
implementation requires that all calculations happen in an down-up traversal,
which makes most forms of non-local type inference impossible. And, despite
its incremental design, the Task Engine does not scale to large projects as well
as was hoped. Finally, proving properties such as type soundness about a lan-
guage whose static analysis is specified in NaBL and TS rules is practically
impossible, since their semantics are not formally defined.

5.3.2 Benefits of the Constraint-based Approach

By implementing our constraint approach in Spoofax, we have shown that it is
a realistic approach to specifying static analysis. We have been able to address
some of current shortcomings, while others remain future work. Specifically,
our approach addresses the following issues:

e Name binding and type checking have a formal basis in the constraint se-
mantics. This gives a formal notion of solver soundness, and also opens
up possibilities for type-soundness proofs for in constraint-based seman-
tics.

e The separation between constraint generation and constraint solving, en-
ables non-local reasoning, such as global type inference.

Efficiency and scalability of the solver, especially in the face of large projects
and compilation units is still an open question, and is the subject of future
work.

55

5. EVALUATION

5.3.3 Implementation Review

The solver algorithm was implemented using the Stratego transformation lan-
guage. This allowed us to implement the solver as a set of rewrite rules on a
context, close to the presentation in the previous chapter. There are however
some deviations from our presentation.

56

e Stratego does not support matching modulo commutativity. Transfor-

mation rules match on one constraint only, and not on a conjunction.
The solver algorithm ensures that if the first constraint of the conjunc-
tion cannot be solved, the next will be tried.

Although performance was not an objective for this thesis, we included
some optimizations, which improved usability of the system. Since con-
straints sometimes depend on other constraints, e.g. name resolution
depends on a complete scope graph, and subtyping on a complete sub-
typing relation, we order the constraints. Equality constraints are always
solved first, since they have no side conditions. Scope graph constraints
are solved before name resolution constraints, and supertype constraints
before subtype checks. Finally, instead of applying the substitution in
rule S-ELIMINATE to all remaining constraints immediately, we only ap-
ply it to an individual constraint just before we try to solve it.

Just returning L to the user when no solution to the constraints is found
is not very informative. Therefore, instead of aborting the solver, we
generate an error, but continue to solve the remaining constraints. To
be able to present more informative error messages to the user, the im-
plementation contains extra rules for error cases, which create messages
appropriate for the constraint that failed.

Error reporting for constraint problems is a known problem (Hage and
Heeren, 2006), because the order of constraint solving can cause the con-
flict to be detected on different constraints. For example, errors might be
reported on the declaration, when it makes more sense on the reference,
or vice versa. Our current approach is naive in this sense, and generating
better error messages is the subject of future work.

Chapter 6

Related Work

In this chapter we discuss related research on static analysis. First we will
discuss other constraint-based solutions. Then we will look at other language-
independent approaches to static analysis. We will focus specifically on the
handling of name binding, and interaction between name binding and type

checking.

6.1 Constraint-based Approaches to Static Analysis

There is a long tradition of formulating Hindley /Milner type systems (Milner,
1978) using constraint. All of these approaches are based on types as terms,
and first-order unification to solve equalities. The original inference algorithm
W is already expressed in terms of Robinson’s unification algorithm to solve
type equalities. However, there is no separate constraint collection, instead
equalities are solved as soon as they are encountered. The algorithm propa-
gates partial solutions, by threading a substitution and a typing environment
through the computation. Odersky et al. (1999) present an extension to Hind-
ley /Milner type systems, that is parametrized in a constraint domain X. Their
type inference algorithm is defined over the judgment ,C,I" - e : t, where ¢
is a substitution, C a constraint in X, and I a typing environment. Apart from
being parametrized in a constraint domain, the inference algorithm is similar
to the original algorithm V. This work was improved on by Sulzmann (2001),
who describes a typing algorithm based on the judgment C,T',e: t = D. Instead
of calculating a type assignment, there is a hypothetical type assignment be-
fore the turnstile, whose validity depends on the satisfiability of the output
constraint D. This allows separating the constraint solver from the constraint
collection.

This idea is taken further by Pottier and Rémy (2005) in their presentation
of HM(X) and an efficient solver for it. They maintain the separation between
constraint generation and solving, but instead of relying on a type environ-
ment I in the constraint generation, they mimic the binding structure of the
program in the constraints. They introduce a constraint def x:¢ in C toin-
troduce a binding in C, and a constraint x < T to instantiate the type of the
binding. Their constraint generation function is written as [e : f], and indeed

57

6. RELATED WORK

does not depend on a typing environment anymore. Although name binding
is part of the constraint problem, it is limited to the lexical structure of the
original program, and the constraints do not introduce more flexibility with
respect to name binding patterns.

Compared to our approach, the support for polymorphism and the param-
etrization in an arbitrary constraint domain X are very attractive. Integrating
them in our approach is a topic of future work. On the other hand, none of
them support the flexibility in name binding our approach offers.

Erdweg et al. (2015) introduced an interesting variant on traditional type
system specifications with co-contextual typing rules. It is based on equal-
ity constraints as well, and relies on a simple lexical scoping model. However,
instead of passing down a type environment in a top-down traversal, they pro-
ceed in a bottom-up manner. They use a judgmente: t| C| R, where C consists
of equality constraints, and R is a set of requirements. The requirements are
dual to a traditional typing environment, and contain declarations and type as-
signments that need to be fulfilled by the surrounding program. The bottom-
up approach allows them to do parallel and incremental type checking. It is
certainly be possible to collect our constraints in a bottom-up manner, by us-
ing constraint variables to stand for yet unknown concrete scopes. However,
the incrementality in their work relies on the possibility to solve constraints
locally, and minimize the information that is passed up. The possibility of
shadowing declarations makes name resolution in our model non-monotonic.
Whether it is possible to adept this to fit in a co-contextual model is still an
open question.

Work by Hage and Heeren (2009); Heeren et al. (2003), based on a tradi-
tional Hindley/Milner type system, exploits the fact that there is no inher-
ent order in constraint solving to improve error reporting. If an error occurs,
i.e. if some constraints are not satisfiable, constraints are removed from the
constraint set until the remaining constraints can be satisfied. The eliminated
constraints are turned into error messages. Heuristics are used to select the
constraints that result in the most informative error messages. Some of these
are generic, e.g. a constraint involved in many conflicts is more likely to result
in an error. However, most of them are specific to the language Haskell, to
which the authors applied their work. Given that our approach tries to target
a range of languages, it is unclear how well their work is applicable.

For static analysis of object-oriented type systems, the work by Palsberg
(1996) takes a different approach, and uses set inclusion constraints. Unfortu-
nately name binding issues are explicitly ignored, so we cannot compare e.g.
how name and type resolution interact for field access.

6.2 Other Approaches to Static Analysis

Since our approach aims to support static analysis for a range of languages,
we will have a look at two other language-independent approaches, attribute
grammars, and generated type checkers.

58

6.2. Other Approaches to Static Analysis

A common approach to the implementation of static semantics of program-
ming languages is to use attribute grammars (Knuth, 1968). Attribute gram-
mars are defined as properties of AST nodes, and do not enjoy the separation
between the specifics of the language, and the logic of name resolution and
type checking. Originally, attributes were values, which meant name resolu-
tion was implemented as computing and propagating typing environments.
Kastens and Waite (1991) provide a reusable abstract data type for name res-
olution, that has some similarities with the scope graph model. Reference at-
tribute grammars (Hedin, 2000) allow references (as in names from the pro-
gram), to link directly to their corresponding declaration. Ekman and Hedin
(2006) use this to provide a generic name binding library. Although this li-
brary is developed as part of the JastAdd compiler, it can be used indepen-
dently. This generic framework is instantiated for a language, by specifying
language specific name lookup functions per language construct. This allows
a specification close to e.g. the Java Language Specification. It does however
mean, that many aspects, such as lexical scoping or shadowing, are encoded
programmatically. Our use of scope graphs allows a more declarative specifi-
cation of such aspects.

Another approach is generating type checkers from high-level specifica-
tion of type systems. Work by Gast (2005) generates type checkers based on
proof search, and supports type systems for functional, imperative, and object-
oriented languages. The specification can be annotated with optimizations to
create efficient implementations. Wittmann (2014) proposes a simpler system,
that replaces proof search with unification based constraint solving. This al-
lows him to automate the search for optimizations in the type system rules.
Both these approaches support high-level specification languages, close to the
presentation of type systems in text books and research literature. Our con-
straint language is low-level, but could be used as a back-end for such higher-
level specification languages.

59

Chapter 7

Discussion

In this chapter we will discuss the capabilities and limitations of the constraint
language, the solver, and its implementation in Spoofax. We will also point
out possible topics for future research.

7.1 Constraint Language

To evaluate the expressiveness of the constraint language, we used it to spec-
ify the static semantics of two languages from the research literature. We use
the simply-typed functional language PCF, and the object-oriented language
Featherweight Java. This shows that our approach is suitable for specification
of the static semantics of a variety of languages, represent different language
paradigms. There are however limitations and open questions, that we want
to discuss here. We will start by discussing name binding, then type checking
and we finish with considering the possibilities of formal reasoning.

Name binding The name resolution calculus allows us to express a wide
range of name binding patterns. The introduction of incomplete scope graphs,
and therefore interaction between name resolution and type checking, has in-
creased this range further. However, until now we have not attempted to ex-
press the semantics for a full, real-word language, such as Java, or C#. For
example, methods and fields often have access modifiers — like public, private —
that influence their visibility in different contexts. It is not possible to express
such patterns in our constraint language. Several interesting issues arise when
considering method overloading and overriding for languages such as Java,
or C#.

e Sometimes duplicate method names are allowed, as long as they are dis-
tinguishable by their type, e.g. with method overloading in Java. A lim-
ited form of this is supported by exploiting the non-determinism result-
ing from ambiguous resolutions. However, it would be impossible to
enforce this, for example, for a method that is never called. Especially
in the face of multiple compilation units, it becomes necessary to specify
such requirements explicitly.

61

7. DISCUSSION

e Shadowing sometimes depends on type information. Consider the fol-
lowing Java classes:

1 // Y extends X
2 class A {voidm(Yy) { ... }}
3 class B extends A { void m(X x) { ... } }

Given an instance b of class B, a method call b.m(y) should resolve to
the method in 4, since its type is more specific than that of the method in
B. This cannot be expressed in our current system, since the method in B
shadows the method in A.

An interesting direction for future work is to investigate if the ability to add
extra meta-data to nodes or edges in the scope graph, and using this data in
the path ordering or the well-formedness predicate, allows specification of the
patterns described above.

Finally, we want to discuss ambiguous resolutions. Currently, ambiguous
resolutions introduce a non-deterministic choice. This enables a limited form
of type-based disambiguation between visible declarations. If unwanted, am-
biguous names can be restricted using disambiguation constraints. For some
languages one might want to be able to reason about the full set of resolved
declarations for a reference.

Type checking The focus of this thesis is on enabling a wider variety of name
binding patterns in constraint-based static analysis. Although syntactic equal-
ity and unification are at the basis of many type systems, it is limited on its
own. An important addition to the constraint language would be to support
various forms of parametric polymorphism. Polymorphism comes in many
flavors, from completely explicit generics in Java, to completely inferred in
languages with let-polymorphism, such as ML and Haskell. Both styles are
similar in the sense that they require instantiation of type variables at the use
site of an identifier. In let-polymorphic languages the variables that need to be
instantiated are part of the type, often written as V7. t. In object-oriented gener-
ics, it is more complicated. The type variable is defined on the class level, but
might be used in the types of class members. The instantiation is determined
by the object, but must be applied for every member access on that object.
An interesting direction for future research is, to investigate if it is possible
to encode this information in the scope graph, for example by attaching type
variable substitutions to edges. Ideally, we would find a uniform model for
let-polymorphism, where quantification is local to a single declaration, and
generics-style polymorphism, where the quantification is — loosely speaking —
over a scope.

The subtyping model we support is limited, and a somewhat ad hoc ad-
dition to the system. It suffices to model the simple, single-inheritance model
required by Featherweight Java. However, to model real-world languages, we
need to consider features such as inheritance, interface-based subtyping, traits,
value boxing and so on. We hope to be able to separate the details of such spe-
cific type system features from the general setup of the constraint language.

62

7.2. Solver

This might lead to a formulation similar to HM(X), in the sense that constraint
system is parametrized in an arbitrary constraint domain X.

Formal reasoning In the study and design of programming languages, type
soundness proofs play an important role. In the introduction we stated that
a formal language for static semantics was desired, specifically to enable such
soundness proofs. Making the connection between a constraint-based static
semantics, and the dynamic semantics of a language, is an important aspect of
further work.

7.2 Solver

The solver is at its core a non-deterministic rewrite system. It supports pro-
gressive solving of constraints, but no backtracking or search. We have already
seen from the incompleteness examples, that this system has clear limitations.
But even though the system is incomplete in general, the incomplete cases
never seem to occur for the example languages we have investigated. An in-
teresting question is therefore whether this holds for a larger set of languages,
or if this will quickly become a problem in practice. It is also interesting to
consider the point made by Vytiniotis et al. (2011), i.e. that “by explaining
that the inference algorithm does not ‘guess’ types, or ‘search” among possible
substitutions, we have found that programmers can, after some experience,
accurately predict what should and should not type-check”.

Implementing our own constraint solver, instead of using an existing solver,
improved our understanding of many issues related to constraint solving. How-
ever, optimizing the implementation for performance has not been carried out
yet. This aspect can be addressed by building on existing constraint solving
literature and implementations. For example, our implementation of unifica-
tion has exponential run time in the worst case. Implementing an algorithms
based on union-find data structures, which yield linear or mostly linear run
times, should considerably benefit solver performance.

Another interesting issue is separate compilation. In a large project with
multiple compilation units, it is desirable that compilation is incremental. If
one compilation unit is changed, the work necessary to check other compila-
tion units should be minimized, by caching and reusing previous analysis re-
sults. Since connections between compilation units are usually based on name
resolution, we hope that an analysis of the scope graph of a compilation unit
can automatically tell us which part of the analysis is local and which part
depends on changes in other compilation units.

The usability of static analysis greatly depends on the quality of the error
messages it generates. We have discussed existing work on error reporting for
constraint-based type checking. Application of these or similar approaches are
left for for future work.

Finally, our experience learned that checking and maintaining the sound-
ness proof of our solver is laborious and error prone. Having a mechanized
proof would be a great improvement, and a topic of future research.

63

7. DISCUSSION

7.3 Prototype Implementation

As we mentioned in the previous section, when moving forward to a production-
quality solver, it is valuable to look at existing constraint solvers. Given that
the performance of constraint solvers —e.g. SMT solvers — has increased many-
fold in recent years, we might consider using one of them as a basis for our
system. We should consider several aspects. First, no existing solvers support
the name resolution calculus, so any chosen solver would need to be extended
from the start. Second, the solver should be integrated in Spoofax, which is
difficult if the solver is not JVM-based. Generally, many aspects of the solver
might be hard to influence. For example, currently the user can influence the
error messages that are generated when a constraint cannot be solved. If we
do not have influence on the error messages or how they are propagated, this
might not be possible when using an external solver. How to go from our
prototype to a high-quality, scalable solver is therefore still an open research
question.

64

Bibliography

Franz Baader and Wayne Snyder. Unification theory. In John Alan Robinson
and Andrei Voronkov, editors, Handbook of Automated Reasoning (in 2 vol-
umes), pages 445-532. Elsevier and MIT Press, 2001. ISBN 0-444-50813-9.

Janusz A. Brzozowski. Derivatives of regular expressions. Journal of the ACM,
11(4):481-494, 1964. doi: db/journals/jacm/Brzozowski64.html.

Torbjérn Ekman and Gorel Hedin. Modular name analysis for Java using Jas-
tAdd. In Ralf Limmel, Jodo Saraiva, and Joost Visser, editors, Generative
and Transformational Techniques in Software Engineering, International Summer
School, GTTSE 2005, Braga, Portugal, July 4-8, 2005. Revised Papers, volume
4143 of Lecture Notes in Computer Science, pages 422—436. Springer, 2006.
ISBN 3-540-45778-X. doi: http:/ /dx.doi.org/10.1007/11877028_18.

Sebastian Erdweg, Tijs van der Storm, Markus Volter, Meinte Boersma, Remi
Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout, Steven Kelly,
Alex Loh, Gabriél D. P. Konat, Pedro J. Molina, Martin Palatnik, Risto Pohjo-
nen, Eugen Schindler, Klemens Schindler, Riccardo Solmi, Vlad A. Vergu,
Eelco Visser, Kevin van der Vlist, Guido Wachsmuth, and Jimi van der Won-
ing. The state of the art in language workbenches - conclusions from the lan-
guage workbench challenge. In Martin Erwig, Richard F. Paige, and Eric Van
Wyk, editors, Software Language Engineering - 6th International Conference, SLE
2013, Indianapolis, IN, USA, October 26-28, 2013. Proceedings, volume 8225 of
Lecture Notes in Computer Science, pages 197-217. Springer, 2013. ISBN 978-
3-319-02653-4. doi: http:/ /dx.doi.org/10.1007 /978-3-319-02654-1_11.

Sebastian Erdweg, Oliver Bracevac, Edlira Kuci, Matthias Krebs, and Mira
Mezini. A co-contextual formulation of type rules and its application
to incremental type checking. In Jonathan Aldrich and Patrick Eug-
ster, editors, Proceedings of the 2015 ACM SIGPLAN International Con-
ference on Object-Oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA 2015, part of SLASH 2015, Pittsburgh, PA, USA, October
25-30, 2015, pages 880-897. ACM, 2015. ISBN 978-1-4503-3689-5. doi:
http://doi.acm.org/10.1145/2814270.2814277.

65

BIBLIOGRAPHY

Martin Fowler. Language workbenches: The killer-app for domain specific
languages?, 2005.

Holger Gast. A generator for type checkers. PhD thesis, Eberhard Karls Univer-
sity of Tiibingen, 2005. http:/ /d-nb.info/977024180.

Jurriaan Hage and Bastiaan Heeren. Heuristics for type error discov-
ery and recovery. In Zoltdn Horvéth, Viktéria Zsok, and Andrew But-
terfield, editors, Implementation and Application of Functional Languages,
18th International Symp osium, IFL 2006, Budapest, Hungary, September 4-
6, 2006, Revised Selected Papers, volume 4449 of Lecture Notes in Computer
Science, pages 199-216. Springer, 2006. ISBN 978-3-540-74129-9. doi:
http://dx.doi.org/10.1007 /978-3-540-74130-5_12.

Jurriaan Hage and Bastiaan Heeren. Strategies for solving constraints in type
and effect systems. Electronic Notes in Theoretical Computer Science, 236:163—
183, 2009. doi: http://dx.doi.org/10.1016 /j.entcs.2009.03.021.

Robert Harper. Practical Foundations for Programming Languages. 2012.

Gorel Hedin. Reference attributed grammars. Informatica (Slovenia), 24(3),
2000.

Bastiaan Heeren, Jurriaan Hage, and S. Doaitse Swierstra. Generalizing
hindley-milner type inference algorithms. Technical Report UU-CS-2002-
031, Department of Information and Computing Sciences, Utrecht Univer-
sity, 2002.

Bastiaan Heeren, Jurriaan Hage, and S. Doaitse Swierstra. Scripting the type
inference process. In Colin Runciman and Olin Shivers, editors, Proceedings
of the Eighth ACM SIGPLAN International Conference on Functional Program-
ming, ICFP 2003, Uppsala, Sweden, August 25-29, 2003, pages 3-13. ACM,
2003. ISBN 1-58113-756-7. doi: http:/ /doi.acm.org/10.1145/944705.944707.

Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Feather-
weight java: a minimal core calculus for java and gj. ACM Transac-
tions on Programming Languages and Systems, 23(3):396—450, 2001. doi:
http://doi.acm.org/10.1145/503502.503505.

Uwe Kastens and William M. Waite. An abstract data type for name analysis.
Acta Informatica, 28(6):539-558, 1991.

Lennart C. L. Kats and Eelco Visser. The Spoofax language workbench:
rules for declarative specification of languages and IDEs. In William R.
Cook, Siobhdn Clarke, and Martin C. Rinard, editors, Proceedings of
the 25th Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA 2010, pages 444—
463, Reno/Tahoe, Nevada, 2010. ACM. ISBN 978-1-4503-0203-6. doi:
http://doi.acm.org/10.1145/1869459.1869497.

66

Bibliography

Donald E. Knuth. Semantics of context-free lan-
guages. Theory Comput. Syst., 2(2):127-145, 1968. doi:
http:/ /www.springerlink.com/content/m2501m07m4666813/.

Gabriél D. P. Konat, Lennart C. L. Kats, Guido Wachsmuth, and Eelco
Visser. Declarative name binding and scope rules. In Krzysztof Czar-
necki and Gorel Hedin, editors, Software Language Engineering, 5th Inter-
national Conference, SLE 2012, Dresden, Germany, September 26-28, 2012,
Revised Selected Papers, volume 7745 of Lecture Notes in Computer Sci-
ence, pages 311-331. Springer, 2012. ISBN 978-3-642-36089-3. doi:
http:/ /dx.doi.org/10.1007 /978-3-642-36089-3_18.

Robin Milner. A theory of type polymorphism in programming. J. Comput.
Syst. Sci., 17(3):348-375, 1978.

Pierre Neron, Andrew P. Tolmach, Eelco Visser, and Guido Wachsmuth. A
theory of name resolution. In Jan Vitek, editor, Programming Languages and
Systems - 24th European Symposium on Programming, ESOP 2015, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015,
London, UK, April 11-18, 2015. Proceedings, volume 9032 of Lecture Notes in
Computer Science, pages 205-231. Springer, 2015. ISBN 978-3-662-46668-1.
doi: http://dx.doi.org/10.1007 /978-3-662-46669-8 9.

Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inference with
constrained types. TAPOS, 5(1):35-55, 1999.

Jens Palsberg. Type inference for objects. ACM Computing Surveys, 28(2):358—
359, 1996.

Benjamin C. Pierce. Types and Programming Languages. MIT Press, Cambridge,
Massachusetts, 2002.

Gordon D. Plotkin. Lcf considered as a programming language. Theoretical
Computer Science, 5(3):225-255, 1977.

Frangois Pottier and Diddier Rémy. The essence of ml type inference. In Ben-
jamin C. Pierce, editor, Advanced Topics in Types and Programming Languages.
The MIT Press, 2005. ISBN 0-262-16228-8.

Didier =~ Rémy. Type systems for programming languages.
http://pauillac.inria.fr/~remy/mpri/cours3.pdf, 2015. Course
notes.

Martin Sulzmann. A general type inference framework for hindley/milner
style systems. In Herbert Kuchen and Kazunori Ueda, editors, Func-
tional and Logic Programming, 5th International Symposium, FLOPS 2001,
Tokyo, Japan, March 7-9, 2001, Proceedings, volume 2024 of Lecture Notes in
Computer Science, pages 248-263. Springer, 2001. ISBN 3-540-41739-7. doi:
http:/ /link.springer.de/link /service/series /0558 /bibs /2024 /20240248 htm.

67

http://pauillac.inria.fr/~remy/mpri/cours3.pdf

BIBLIOGRAPHY

Martin Sulzmann, Martin Miiller, and Christoph Zenger. Hindley /milner style
type systems in constraint form. Technical Report ACRC-99-009, University
of South Australia, School of Computer and Information Science, July 1999.

Hendrik van Antwerpen, Pierre Neron, Andrew P. Tolmach, Eelco Visser,
and Guido Wachsmuth. A constraint language for static semantic anal-
ysis based on scope graphs. In PEPM, pages 49-60, January 2016. doi:
http://dx.doi.org/10.1145/2847538.2847543.

Eelco Visser, Guido Wachsmuth, Andrew P. Tolmach, Pierre Neron, Vlad A.
Vergu, Augusto Passalaqua, and Gabriél D. P. Konat. A language designer’s
workbench: A one-stop-shop for implementation and verification of lan-
guage designs. In Andrew P. Black, Shriram Krishnamurthi, Bernd Bruegge,
and Joseph N. Ruskiewicz, editors, Onward! 2014, Proceedings of the 2014
ACM International Symposium on New Ideas, New Paradigms, and Reflections
on Programming & Software, part of SLASH ‘14, Portland, OR, USA, Octo-
ber 20-24, 2014, pages 95-111. ACM, 2014. ISBN 978-1-4503-3210-1. doi:
http://doi.acm.org/10.1145/2661136.2661149.

Dimitrios Vytiniotis, Simon L. Peyton Jones, Tom Schrijvers, and Martin Sulz-
mann. Outsidein(x) modular type inference with local assumptions. J. Funct.
Program., 21(4-5):333-412, 2011.

Guido Wachsmuth, Gabriél D. P. Konat, Vlad A. Vergu, Danny M. Groenewe-
gen, and Eelco Visser. A language independent task engine for incremental
name and type analysis. In Martin Erwig, Richard F. Paige, and Eric Van
Wyk, editors, Software Language Engineering - 6th International Conference, SLE
2013, Indianapolis, IN, USA, October 26-28, 2013. Proceedings, volume 8225 of
Lecture Notes in Computer Science, pages 260-280. Springer, 2013. ISBN 978-
3-319-02653-4. doi: http://dx.doi.org/10.1007 /978-3-319-02654-1_15.

Pascal Wittmann. A language for the specification and efficient implementa-
tion of type systems. Master’s thesis, 2014.

68

Appendix A

Proofs

A.1 Reduction Invariant

We will prove the invariants of the reduction by case analysis on the reduction
rules. Before we do this, we recall some properties we will use in the proof.
We have the following properties of substitutions (Baader and Snyder, 2001):
1. The composition of two idempotent substitutions ¢,¢” is idempotent if
dom(c) Nvars(ran(c’)) = @.
2. If tis ground, i.e. vars(t) = @, substitution has no effect, so Vo.to = t.
Regarding set union and the subset relation, we have:

VSS'.(SCS'US) (t)

And finally, if the constraint C does not contain scope graph constraints, the
set of edges in the graph remains the same for the rest of the reduction, i.e.

LEMMA A.1 (Stable scope graph).
VC,A,G, A", G (c NCY =D A(CA,G) —* (TrugA”,G") = Jo.Go = g")

Proof. Assume a context with scope graph G, and a constraint C that contains
no scope graph constraints, i.e. C N CY. According to our reduction invariant,
the scope graph G” is a larger or equal instantiation of G, i.e. J0.Go C G".
There are two possible cases, either 30.Go = G” or Jo.Go C G". We will show
that the second case results in contradiction. Only rules that match on con-
straints from CY add elements to G. None of the reduction rules introduces
new constraints from CY, so the constraints that caused the extension of G must
be in C already. This is a contradiction, therefore the conclusion holds. O

Note that we use the reduction invariant Equation (WF) in our proof, and we
use this lemma in the proof of the reduction invariant. Because the multi-step
reduction in the invariant proof never includes the reduction step that we are
proving the invariant for, this is well-founded.

Now we can prove the following invariants for every possible reduction step.

69

A. PROOFS

LEMMA 4.7 (Invariant of —). The following invariant holds for the reduction:

VCAC'A. (<C;A> 5 (CA) =

(WE((C;A)) = WE((C’;A"))) (WF)
ANACN (Sub)
AVA" ((C; Ay —* (True; A”) AWE((C;A)) (Star)

AN C = A" C))

Proof. By case analysis on the reduction rules.

(1)1. CASE: Rule S-TRUE
ASSUME: 1. (True A C;A) — (C;A)
(2)1. ASSUME: WF((True A C;A))
PROVE: WEF((C;A))
PROOF: Trivial.
(2)2. PROVE: ACA
PROOF: By reflexivity of C.
(2)3. ASSUME: 1. Any A”
2. (C; Ay —* (True; A”)
3. WE((G;A))
4. A"=C
PROVE: A" |=TrueAC
(3)1. SUFFICES: A" |= True
PROOF: By application of rule C-CONJ, given that A" |= C
follows from assump. (2)3-4.
(3)2. QE.D.
PROOF: By rule C-TRUE.

(1)2. CASE: Rule S-TRIVIAL
ASSUME: 1. (t =t AC;A) — (C;A)
(2)1. ASSUME: WF({t =t A C;A))
PROVE: WE((C;A))
PROOF: Trivial.
(2)2. PROVE: ACA
PROOF: By reflexivity of C.
(2)3. ASSUME: 1. Any A”
2. (C;A) —* (True; A”)
3. WE((C;A))
4. N'E=C
PROVE: A'|Et=tAC
(3)1. SUFFICES: A" =t =t
PROOF: By application of rule C-CONJ, given that A” = C
follows from assump. (2)3-4.
(3)2. QE.D.
PROOF: By trivial term equality, and rule C-EQUAL.

70

A.1. Reduction Invariant

(1)3. CASE: Rule S-ORIENT
ASSUME: 1. (t =a AC;AY — (a =t AC;A)
2.t ¢ Var
(2)1. AsSUME: WF({t =a AC;A))
PROVE: WEF({a =tAGC;A))
PROOF: Trivial.
(2)2. PROVE: ACA
PROOF: By reflexivity of C.
(2)3. ASSUME: 1. Any A”
2. (x =t ANC; Ay —* (True; A”)
3. WE((a =t AC;A))
4. N'Ea=tNC
PROVE: A'Et=aAC
(3)1. SUFFICES: A" =t =«
PROOF: By application of rule C-CONJ, given that A” |= C
follows from assump. (2)3-4.
(3)2. QE.D.
PROOF: Let ¢ be the substitution in A”. By assump. (2)3-4
and inversion of rules C-CONJ and C-EQUAL we getwg” =t¢".
Commutativity of = and application of rule C-EQUAL give
us A Et=a.

(1)4. CASE: Rule S-ELIMINATE
ASSUME: 1. (¢ =t AC;A,¢) — (C:A, @) 0
2. a ¢ vars(t)
3.0:={a—t}
(2)1. AsSUME: WF({a =t AC;A, ¢))
PROVE: WEF((C;A,¢)0)
(3)1. @0 is idempotent
PROOF: By assump. (1)4-2, we conclude that ¢ is idempo-
tent. By the assumption that A is well-formed, and Corol-
lary 4.3, we conclude that ¢ is idempotent. By the assump-
tion that A is well-formed, and Corollary 4.4, we know that
vars(t) Ndom(¢) = @. Therefore, the composition ¢o is idem-
potent.
(3)2. (C;A, @)oo = (C;A,¢)0
PROOF: We show equality by equational reasoning:

(C;A, p)op0
= (CA,¢)popr ((C;A)p = (C;A) by assump. (2)1)
= (CA, @)oo (by idempotence of ¢0)
= (CA,)0 ((C;A)p = (C;A) by assump. (2)1)

<3>3 vxf (,R,(X?) — X? — l—gg X? — X?)

PROOF: Given that Vx?. (R(xZR) = x;? — kg xf— x]D) fol-

lows from our assumption, and ¢ x® = x? = Vo.Fg, x%— x
(van Antwerpen et al., 2016, ¢).

b
[

71

A. PROOFS

(3)4. Q.E.D.
PROOF: By (3)2.
(2)2. PROVE: A, 9 C (A,)0
PROOF: By using ¢ in the definition of C.
(2)3. ASSUME: 1. Any A", ¢"
2. (CA, @)o —* (True; A", ¢")
3. WF((C;A, ¢)0)
4. A", ¢" = Co
PROVE: A, ¢"Ea=tAC
(3)1. SUFFICES: A", 9" Fa =t
PROOF: By application of rule C-CONJ, given that A”, ¢" |=C
follows from assump. (2)3-4.
(3)2. SUFFICES: g = t¢
PROOF: By inversion of rule C-EQUAL.
(3)3. (A,p)a C A", 9"
PROOF: By assump. (2)3-2, and Corollary 4.9.

(3)4. QE.D.
PROOF: We show by equational reasoning.
DCQD” — t(PH
= agoo’ =teoo’ (3o’ poa’ = ¢" by (3)3)

= a0’ =too’ (ap =wa and te =t by assump. (2)3-3)
=to’=to’ (by application of ¢ and assump. (1)4-2)

(1)5. CASE: Rule S-DECOMPOSE
ASSUME: 1. (f(ty,...,t,) = f(t],...,th) ACAY — (A1 t; =) ACA)
(2)1. ASSUME: WE({f(ty,...,t,) = f(t},...,t)) NG A))
PROVE: WEF({(Al_1t; =t)) ANC;A))
PROOF: Trivial.
(2)2. PROVE: ACA
PROOF: By reflexivity of C.
(2)3. ASSUME: 1. Any A”
2. (Nt =) ACA) —* (Trug; A”)
3 WR((AL £ 1) A Cia))
4 AT (Nt 2 E) AC
PROVE: A" | f(ty,. . ty) = f(t],...,th) AC
(3)1. SUFFICES: A" |= f(ty,...,t,) = f(#],...,th)
PROOF: By application of rule C-CONJ, given that A” = C
follows from assump. (2)3-4.
(3)2. QE.D.
PROOF: Because of assump. (2)3-4, we know V¢, t/.t;¢ = t]¢.
Therefore f(t1¢,...,t,¢) = f(t]9,...,t,¢), and by definition
of substitution, f(ty,...,t,¢) = f(t},...,t,¢). Rule C-EQUAL

?

gives A" = f(t1, ... t,) = F(E,,... 1)),

(1)6. CASE: Rule S-TYPEOF1
ASSUME: 1. (x? :t NG A,) — (CA{(xP,£)} Up)

72

A.1. Reduction Invariant

2 p(xP) = L
(2)1. AssUME: WE((xP : t AC;A,¢))
PROVE: WE((CA,{(x?,£)} Uy))
PROOF: Trivial.
(2)2. PROVE: A, p CA{(xP,t)} U
PROOF: By Equation (1) on .
(2)3. ASSUME: 1. Any A”,y"
2. (CGA{(x?,6)} Up) —* (True; A", 9")
3. WF((CA, {(x2,6)} U)
4. A//’ l/)” ‘: C
PROVE: A", 9" |=xP:tAC
(3)1. SUFFICES: A", " |=xP : ¢
PROOF: By application of rule C-CONJ, given that A”,¢" |=C
follows from assump. (2)3-4.
(3)2. SUFFICES: " (xP¢") =tg"
PROOF: By inversion of rule C-TYPEOF.
(3)3. A{(x0,6)} U C A",y
PROOF: By assump. (2)3-2, and Corollary 4.9.
(3)4. QED.
PROOF: Let ¢, ¢”’ be the substitution components of A, A” re-
spectively. By equational reasoning;:

Jo.9"(x7) = to (By (3)3)
= ¢"(x?) =teo (tg = t by assump. (2)3-3)
= 9" (x7) = tg" (9o = ¢" by (3)3)
= p"(xP¢") =" (xP¢@" = x?, since x? is ground)

(1)7. CASE: Rule S-TYPEOFN
ASSUME: 1. (x?:t ACA, @,) — (t =t ANCA, 9,)
2 p(x?) = ¥
(2)1. ASSUME: WE((xP?: t AC;A, @, 9))
PROVE: WEF({t =t AC;A, ¢,¢))
PROOF: Trivial.
(2)2. PROVE: A, 9,9 CA, 9,9
PROOF: By reflexivity of C.
(2)3. ASSUME: 1. Any A", ¢",¢"
2. (tZENGCA, @, p) —* (Trug; A", 9", ")
3. WE((t =t ACA@,9))
4. A//, (P//’ "IJ//): tZHAC
PROVE: A, ¢" " =xP:tANC
(3)1. SUFFICES: A", ", " |=xP 1t
PROOF: By application of rule C-CONJ, given that A”, ¢, ¢" |=C
follows from assump. (2)3-4.
(3)2. SUFFICES: ¢"(xP¢") =tg"
PROOF: By inversion of rule C-TYPEOF.
<3>3' A, 4)/11[7 C A", (P//’ lPH
PROOF: By assump. (2)3-2, and Corollary 4.9.

73

A. PROOFS

(3)4. Q.ED.
PROOF: Assump. (2)3-4, inversion of rule C-EQUAL, com-
mutativity of = and substituting ¢’ gives us

p(x?)g" = to"
= "(xP) =t¢" (by (3)3 and x? € dom(y))

= 9" (x7¢") = tg" (x?¢" = xP since x? is ground)

(1)8. CASE: Rule S-GDECL
ASSUME: 1. <i5 — P A C;A,g> — <C;A,{iS — U g>
2. As.s —» x]-D €eg
(2)1. Assume: WE({i*—» x2 A C;8,G))
PROVE: WE((C;A, {i* —» x2} U G))
PROOF: Assump. (1)8-2 ensures G remains well-formed. Since we
match on a constraint from CY, our assumption ensures dom(R) =@,
and therefore we trivially have VxR. (R(x?) = x®* = kg xR — xP).
(2)2. PROVE: A,G CA,{i®*—» x]'?} ug
PROOF: By Equation (t) on G.
(2)3. ASSUME: 1. Any A”,G"
2. <C;A,{1'5 — x?} U g> —* (True; A, G")
3. WE({Ci\, {i* — 2} UG))
4. A" G"): C
PrROVE: A",G"|=i®—»x7 N C
(3)1. SuFrICEs: A",G" |=i® —» x7?
PROOF: By application of rule C-CONJ, given that A”,G" |=C
follows from assump. (2)3-4.
(3)2. A {i*—»xPIUG C A", G"
PROOF: By assump. (2)3-2, and Corollary 4.9.
(3)3. Q.E.D.
PROOF: By (3)2 and application of rule C-GDECL.

(1)9. CASE: Rule S-GREF
ASSUME: 1. (2} — P ACA,G) — (CGA {xf — 7} UG)
2. As.x} —»s€G
(2)1. AssuME: WE((xf—» > AC;A,G))
PROVE: WE((CA, {xf —j?} UG))
PROOF: Assump. (1)9-2 ensures G remains well-formed. Since we
match on a constraint from CY, our assumption ensures dom(R) =@,
and therefore we trivially have Vx®. (R(x?) = x®* = kg xR — xP).
(2)2. PROVE: A,GCA{xfF—j}UG
PROOF: By Equation (t) on G.
(2)3. ASSUME: 1. Any A”,G"
2. (CGA{xfF— PUG) —* (Trug; A", G")
3. WE((CA, {xfF— P} UG))

74

A.1. Reduction Invariant

4. A",G"): C
PROVE: A", G"E=xfF— 7 AC
(3)1. SurFICES: A", G" |= xf —» j°
PROOF: By application of rule C-CONJ, given that A”,G" |=C
follows from assump. (2)3-4.
(3)2. A, {xF —»S}UG C A", G"
PROOF: By assump. (2)3-2, and Corollary 4.9.
(3)3. QE.D.
PROOF: By (3)2 and application of rule C-GREEF.

(1)10. CASE: Rule S-GEDGE
ASSUME: 1. (i* > s ACA,G) — (CGA{i*»s}UG)
(2)1. AsSUME: WF((i* »sAC;A,G))
PROVE: WEF({C;A,{i* 1»s}UG))
PROOF: Since we match on a constraint from CY, our assumption
ensures dom(R) = @, and therefore we trivially have
VAR (R(xR) = x® =g xR — xP).
(2)2. PROVE: A,GCA{i*-»stug
PROOF: By Equation (1) on G.
(2)3. ASSUME: 1. Any A”,G"
2. (GAA* s} UG) —* (Trug A, G")
3. WE((C;A, {i* 1> s} UG))
4. A", G" ‘: C
PrROVE: A", G"E=i#-»sAC
(3)1. SUFFICES: A”,G" =1i° 15
PROOF: By application of rule C-CONJ, given that A”,G" |=C
follows from assump. (2)3-4.
(3)2. A »sUGC A, G
PROOEF: By assump. (2)3-2, and Corollary 4.9.
(3)3. Q.E.D.
PROOF: By (3)2 and application of rule C-GEDGE.

(1)11. CASE: Rule S-GNEDGE
ASSUME: 1. <i5 Lo 2B A c;A,g> N <C;A,{i5 Lo xFHU g>
2. 3s.xf—>s€g
(2)1. AssUME: WE((i* Lo x¥ A CA,G))
PROVE: WF(<C;A,{iS Lo X8} U g>)
PROOF: Assump. (1)11-2 ensures G remains well-formed. Since
we match on a constraint from CY, our assumption ensures dom(R) =@,
and therefore we trivially have Vx®. (R (x?) = x° = Fg x% = aP).
(2)2. PROVE: A,G CA{i* 1> x;?} ug
PROOF: By Equation (1) on G.
(2)3. ASSUME: 1. Any A”,G"
2. <C;A,{i5 Lo xR U g> —* (True; A", G")

75

A. PROOFS

(1)12.

76

3. WF(<C;A,{1’5 Lo xFHU g>)
4.A",G"|=C
PrROVE: A",G" =i 1> x]f* AC
(3)1. SUFFICES: A",G" |=i* - x¥
PROOF: By application of rule C-CONJ, given that A”,G" = C
follows from assump. (2)3-4.
(3)2. A {i* > xfFUG C A", G"
PROOF: By assump. (2)3-2, and Corollary 4.9.
(3)3. Q.E.D.
PROOF: By (3)2 and application of rule C-GNEDGE.

CASE: Rule S-GAssoC
ASSUME: 1. (x? —> P AC;A,G) — (A {xP —>j°} UG)
2. As.x} —>seg
(2)1. AssuME: WF((x? —>j°* AC;A,G))
PROVE: WE((CA,{xP —>°} UG))
PROOF: Assump. (1)12-2 ensures G remains well-formed. Since
we match on a constraint from CY, our assumption ensures dom(R) =@,
and therefore we trivially have Vx. (R (x?) = x®* = kg x® — aP).
(2)2. PROVE: A,GCA {xP—j}UG
PROOF: By Equation (1) on G.
(2)3. ASSUME: 1. Any A”,G"
2. (CGAA{x? —> L UG) —* (True; A", G")
3. WE((CA, {x2 —> P} U G))
4. A", G" ‘: C
PrROVE: A",G"=xP—jANC
(3)1. SuFFICES: A”,G" |= xP —> j°
PROOF: By application of rule C-CONJ, given that A”,G" |=C
follows from assump. (2)3-4.
(3)2. A{x?— UG CA",G"
PROOF: By assump. (2)3-2, and Corollary 4.9.
(3)3. QE.D.
PROOF: By (3)2 and application of rule C-GASSOC.

. CASE: Rule S-AssocC

ASSUME: 1. (x?~sACA,G) — (s =5 ACA,G)
2.xP—=>jeg
(2)1. AssuME: WF((x? ~»sAC;A,G))
PROVE: WEF({s =j*AC;A,G))
PROOF: Trivial.
(2)2. PROVE: A,GCA,G
PROOF: By reflexivity of C.
(2)3. ASSUME: 1. Any A”,G"
2. (s= S ACA,G) —* (True; A", G")
3. WE((s =°* AC;A,G))

A.1. Reduction Invariant

4.A,G"=sZSAC
PROVE: A",G"l=xP~sAC
(3)1. SUFFICES: A”,G" |= xP ~»s
PROOF: By application of rule C-CONJ, given that A”,G" |=C
follows from assump. (2)3-4.
(3)2. x? —>j€g”
PROOF: By assump. (1)13-2 and assump. (2)3-3, we have
Jo.Go C G”. Since x? —> j° is ground, it is also in G"'.
(3)3. s¢" =J°
PROOF: By assump. (2)3-4 and inversion of rule C-EQUAL,

we have s¢” = j°¢". We conclude by observing that, since

j°* is ground, j°¢" = j°.
(3)4. QE.D.

PROOF: By rule C-Assoc.

(1)14. CASE: Rule S-RESOLVE1
ASSUME: 1. (x> d A C;8,0,R) — (d £ X2 A C;A, G, {(xf,x?)} UR)
2.R(xf) =1
3.CNCY=0
4 RESg(xf) =DAD#UAXP €D
(2)1. AssuME: WF((xf—dANC;A,G,R))

PROVE: WF(<d L x? NCA, G, {(x},2P)} U R>)

PROOF: The extension of R requires g x} — x;’, which we have

by assump. (1)14-4 and x? € RESg(x%) = kg xR — xP (van

Antwerpen et al., 2016, Lemma 2). Assump. (1)14-3 discharges

the well-formedness condition CNCY = @ = dom(R) = @.

(2)2. PROVE: A,G,RC A,g,{(x?,x]f?)} UR
PROOF: By Equation (1) on 'R.
(2)3. ASSUME: 1. Any A”,G",R"
2. <d L xP ANCGA,G,{(x},2P)} U R> —* (True; A", G", R
3. WF(<d 2 xP AGA,G{(x},2P)} U R>)
4. A",G"R" = d = xP A C
PrROVE: A", G"R"ExF—dAC
(3)1. SurrICES: A", G", R" = xf —d
PROOF: By application of rule C-CONJ, given that A”,G"”, R" |=C
follows from assump. (2)3-4.
(3)2. WE((True;A”,G", R"Y)
PROOF: By assump. (2)3-2, and Corollary 4.8.
(3)3. A GA(xf,27)} UR C A", G", R”
PROOF: By assump. (2)3-2, and Corollary 4.9.

(3)4. R"(xf) = x7
PROOF: Given (3)3 and the fact that R is ground, we have
R (xf) = x7.

<3>5 '_g// X? — x]-D

77

A. PROOFS

PROOF: By (3)2 and (3)4.
(3)6. do" = x?
PROOF: By assump. (2)3-4 and inversion of rule C-EQUAL,

we have d¢” = x7¢". We conclude by observing that, since

x7 is ground, x7 " = x7.
(3)7. Q.E.D.
PROOF: By (3)4, (3)5, (3)6 and rule C-RESOLVE.

(1)15. CASE: Rule S-RESOLVEN
ASSUME: 1. (x}—d AC;A,G,R) — <d = xP A C,-A,Q,R>
2. R(xF) = X7
(2)1. AsSUME: WE((xf —dAC;A,G,R))
PROVE: WE((d < x?AC;A,G,R))
PROOF: Trivial.
(2)2. PROVE: A,G,RCA,G,R
PROOF: By reflexivity of C.
(2)3. ASSUME: 1. Any A”,G",R"
2. <d L xP A C;A,Q,R> —* (Trug; A", G, R")
3. WF(<d Z X0\ C;A,Q,R>)
4. A",G"R" | d = xP A C
PrOVE: A", G"R"Ex}—dnC
(3)1. SurrICES: A", G", R" = xf —d
PROOF: By application of rule C-CONJ, given that A”,G"”,R" |=C
follows from assump. (2)3-4.
(3)2. WF((True;A”,G",R"Y)
PROOF: By assump. (2)3-2, and Corollary 4.8.
(3)3. A,G,R C A",G", R"
PROOF: By assump. (2)3-2, and Corollary 4.9.
(3)4. R"(xf) =7
PROOF: Given assump. (1)15-2, (3)3 and the fact that R is
ground, we have R”(x) = x7.
<3>5 }_g// X? — X}D
PROOF: By (3)2 and (3)4.
(3)6. do" = x?
PROOF: By assump. (2)3-4 and inversion of rule C-EQUAL,

we have d¢” = x7¢". We conclude by observing that, since

D 3 D,/ _ ,D
X} is ground, x7¢" = x7.
(3)7. QE.D.

PROOF: By (3)4, (3)5, (3)6 and rule C-RESOLVE.
(1)16. CASE: Rule S-DISTINCT

ASSUME: 1. (INAGC;A,G) — (CA,G)
2. vars(N) =0

78

A.1. Reduction Invariant

(2)1.

3.CNCY =0

4. Nsg(N)=XAX# L

5.Vxe X.v(x)=1
ASSUME: WE((INAC;A,G))
PROVE: WE((C;A,G))
PROOF: Trivial.

. PROVE: A,GCA,G

PROOF: By reflexivity of C.

. ASSUME: 1. Any A”,G"

2. (CA,G) —* (True; A", G")
3. WE((C;A,G))
4. A", G" |: C
PrROVE: A",G"EINAC
(3)1. SuFrrICES: A”,G" = IN
PROOF: By application of rule C-CONJ, given that A”,G" |=C
follows from assump. (2)3-4.
(3)2. 30.G" =Go
PROOF: By assump. (1)16-3, assump. (2)3-2 and Lemma A.1.
PROOF: We know that NSg(N) = X = Vo.[N]g, = X
(van Antwerpen et al., 2016, Lemma 3). We conclude by
assump. (1)16-4 and (3)2.
(3)4. Q.ED.
PROOF: By (3)3, assump. (1)16-5 and rule C-DISTINCT.

(1)17. CASE: Rule S-SUBSET
AsSUME: 1. (N; S N, AGA,G)Y — (CA,G)

(2)1.

2. vars(Np) Uvars(N,) =@
3.CNCY=0
4. Nsg(Ny) = X; A Xy # L
5. Nsg(Ny) = XA X, # L
6. X, C X,
AsSUME: WE((N; C N, AG;A,G))
PROVE: WE((C;A,G))
PROOF: Trivial.

. PROVE: A,GCA,G

PROOF: By reflexivity of C.

. ASSUME: 1. Any A”,G"

2. (C;A,G) —* (True; A", G")
3. WE((C;A,G))
4. A", G" ‘: C
PrROVE: A",G"EN;CN,AC
(3)1. SUFFICES: A”,G" = N; C N,
PROOF: By application of rule C-CONJ, given that A”,G" = C
follows from assump. (2)3-4.
(3)2. 30.G" =Go

79

A. PROOFS

PROOF: By assump. (1)16-3, assump. (2)3-2 and Lemma A.1.
<3>3 [[Ni]]g// == Xi forie {1,2}
PROOF: We know that NSg(N) = X = Vo.[N]g, = X
(van Antwerpen et al., 2016, Lemma 3). We conclude by
assump. (1)16-4 or assump. (1)16-5, and (3)2.
(3)4. QE.D.
PROOF: By (3)3, assump. (1)16-6 and rule C-SUBSET.

(1)18. CASE: Rule S-SUPERTYPE

80

ASSUME: 1. (t; <tthy ACA, <7) — (CA{(tt) |t <t ANt <p ' }U<T)
2. vars(t;) Uvars(t,) =@
3. t; ¢ dom(<7)
4.t L1t
(2)1. ASSUME: WE((t; <:t) AC;A, <))
PROVE: WE((CA{(t,t) |t <rt; Nt <p '} U<7))
(3)1. LET: T, ={t|t<7H}
L={t|t,<rt}
< ={(tt)|[teT T At €T} U<y
(3)2. Vte Tyt € Ty.(t Ly ' A L1 t)

PROOF: We show by contradiction. Assume thereisat Ty,

t € T, such that ' < t. By definition, we have t <7 t; and

t, <r t'. Transitivity of < implies t, < t;, but this contra-

dicts assump. (1)18-4. Conversely, if we assume t < t/, we

must have ¢’ € T; by transitivity, and therefore t' <; t;. This

would also contradict assump. (1)18-4.

(3)3. Vt,t'. (t <)t =t £ 1)

PROOF: We distinguish two cases, based on whether the in-

equality appears in the original subtyping relation <r:

1. t <p t': We know by anti-symmetry of <7, that t’ £ t.
Now assume we would have #' <’ t. This would contra-
dict (3)2, since we have t <r t’ in the original relation. So
the new relation will not violate anti-symmetry for exist-
ing pairs in the relation.

2.t £ t': We know by (3)2 that T} and T, are disjoint and
are not related in <. By construction of </, types from
T, only appear as smaller than types from T,.

34Vt (<N <Lt =t <)

We distinguish four cases, based on whether the inequali-

ties are in the original subtyping relation <7:

1. t <7 ' ANt <7 t": We conclude by transitivity of <7.

2.t £t At £t An equality that does not appear in the
original <7, must be an inequality between a type from
T, and a type from T,. Since t' appears on both the left
and the right of the inequality, it should be in T} and T,.
This contradicts (3)2, so this case does not occur.

3.t <p ' ANt £7 t": By similar reasoning as case (2), we

A.1. Reduction Invariant

must have t' € T} and " € T,. By transitivity we have
t € Ty. Therefore t </, t" by construction of <7.

4.t £7 ' ANt <g 1 By similar reasoning as case (2), we
must have t € Ty and ' € T,. By transitivity we have
t"" € T,. Therefore t < t" by construction of <.

(3)5. Vt.({t' | t </ t'} is totally ordered by <)

PROOF: We distinguish two cases:

1. t £ t;: Since we only added pairs t </, t' for t <t t;, the
set of larger types for any t £t t; is the same as in <r,
and therefore totally ordered.

2. t </ t;: By assump. (1)18-3 and the total ordering of <7,
we know that t; is the largest type in T = {t' | t < t'}.
Therefore, theset T' = {t' |t <7 '} =TUT,. Lett',t" € T".
We distinguish two cases:

a.t' and t” are both in T, or in T,, in which case the pair
is ordered in <7.
b.t € T and t” € T,, in which case the construction of </,
ensures the pair is ordered.
(3)6. QE.D.
PROOF: By (3)4, (3)3, and (3)5.

. PROVE: A,<T§ A,{(t,t’) ‘ tSTtl/\tZ ST t/}U<T

PROOF: By Equation (1) on <r.

. ASSUME: 1. Any A", <%
2.(CGAA{Y) [t <pti ANty <pt'}U <) —* (Trug; A", <7)

3. WE((CA{(tt) [t <pti ANty <p '} U <))
4. N, <E=C

PROVE: A", <T=t; <, AC

(3)1. SUFFICES: A", <=t <:t,
PROOF: By application of rule C-CONJ, given that A”, <//|=C
follows from assump. (2)3-4.

(3)2. AtY) [t <t Nt <pHIU<p CA", <]
PROOF: By assump. (2)3-2, and Corollary 4.9.

(3)3. LET: <} be{(t,t)|[t<rti At <pt'}U<p

(3)4. t9" <7 t29"
PROOF: Since t; and t, are ground, it suffices to show t; <’/ t,.
By (3)2, given that t; </, t, in the construction of <.

(3)5. Vit (t¢" <t => tyg" <It)
PROOF: Since t; and t, our ground, it suffices to show that
Vt.(t; <7t = t, <] t) holds. From the definition of <7,
it follows that Vt.(t; <7t = t, <} t). In the rest of the
reduction, assump. (1)18-3 ensures that no new supertypes
of t; are added that are not also supertypes of t,, therefore
Vi (t <t = t, <It).

(3)6. Q.E.D.
PROOF: By (3)4, (3)5, and rule C-SUPERTYPE.

81

A. PROOFS

(1)19. CASE: Rule S-SUBTYPE
ASSUME: 1. (t; <tt, AC;A,<7) — (CA, <7)
2. vars(t;) Uvars(t,) =@
3.4 <1t
(2)1. ASSUME: WF((t; <:t, AC;A, <7))
PROVE: WE((C;A,<7))
PROOF: Trivial.
(2)2. PROVE: A, <7CA,<p
PROOF: By reflexivity of C.
(2)3. ASSUME: 1. Any A", <]
2. (CA, <1y —* (Trug; A", <)
3. WE((C;A, <71))
4. N, <E=C
PROVE: A", <=t <, AC
(3)1. SUFFICES: A", <=t <it,
PROOF: By application of rule C-CONJ, given that A”, <//|=C
follows from assump. (2)3-4.
(3)2. SUFFICES: t; <7t,
PROOF: By inversion of rule C-SUBTYPE and that fact that
ty,t, are ground, so t;¢" = t;.
(3)3. A, <rC A", <Y
PROOF: By assump. (2)3-2, and Corollary 4.9.
(3)4. QED.
PROOF: By assump. (1)19-3 and (3)3.

(1)20. Q.E.D.
PROOF: By the principle of exhaustion. O

A.2 Reduction Termination
Recall the lemma for termination of multi-step reductions:
LEMMA 4.12 (Termination of —). VCA. ({C;A) —* ... terminates).

Proof. Take the lexicographical tuple on natural numbers (1y,n,,n3,1n,), where

e 1, is the number of non-equality constraints,

e 11, is the number of distinct variables in eq. constraints,

e 13 is the number of symbols in eq. constraints,

e 1, is the number of equality constraints of the form t = a, where t ¢ Var.
By case analysis on the reduction rules, we show that this tuple decreases for
every reduction rule.

(1)1. CASE: S-TRUE
PROOF: The removal of the constraint True decreases 1, by 1.

(1)2. CASE: S-TRIVIAL
PROOF: The removal of the constraint ¢ = t decreases 713 by two times the
number of symbols in .

82

A.2. Reduction Termination

. CASE: S-ORIENT

PROOF: The removal of the constraint t = a decreases 14 by 1. The condi-
tion t ¢ Var ensures that the newly introduced constraint does not count
towards .

. CASE: S-ELIMINATE

PROOF: The application of the substitution a — ¢, together with the con-
dition that o ¢ vars(t) ensures that a is eliminated, decreasing n, by 1.

. CASE: S-DECOMPOSE

PROOF: The elimination of the two f symbols decreases 13 decreases by
2. The newly introduced constraints may increase 7.

. CASE: S-TYPEOF1

PROOF: The removal of the constraint x} : t decreases 1, by 1.

. CASE: S-TYPEOFN

PROOF: The removal of the constraint x? : decreases n; by 1. The intro-
duced equality constraint may increase n,, n3 and ny.

. CASE: S-GDECL

PROOF: The removal of the constraint j — x; decreases 1, by 1.

. CASE: S-GREF

PROOF: The removal of the constraint x; — j decreases n; by 1.

. CASE: S-GNEDGE

PROOF: The removal of the constraint j 1> x; decreases 1, by 1.

. CASE: S-GEDGE

PROOF: The removal of the constraint j - s decreases 1; by 1.

. CASE: S-GASSOC

PROOF: The removal of the constraint x; —> j decreases n; by 1.

. CASE: S-AssOC

PROOF: The removal of the constraint x? ~+ s decreases 1, by 1. The
introduced equality constraint may increase n,, 13 and ny.

. CASE: S-RESOLVE1

PROOF: The removal of the constraint x} — d decreases 11y by 1. The in-
troduced equality constraint may increase 1,, 113 and n4. The resolution
algorithm terminates (van Antwerpen et al., 2016, Section 4.3).

. CASE: S-RESOLVEN

PROOF: The removal of the constraint x} — d decreases n; by 1. The
introduced equality constraint may increase n,, 113 and 7.

. CASE: S-DISTINCT

PROOF: The removal of the constraint !N decreases 111 by 1. Calculating
the name set terminates, because the sets of references and declarations
are finite, and the resolution algorithm terminates.

. CASE: S-SUBSET

PROOF: The removal of the constraint N; C N, decreases 1, by 1. Cal-

83

A. PROOFS

84

culating the name sets terminates, because the sets of references and
declarations are finite, and the resolution algorithm terminates.

. CASE: S-SUPERTYPE

PROOF: The removal of the constraint t; <: ¢, decreases n; by 1. Build-
ing the subtyping relation terminates, since <r is finite.

. CASE: S-SUBTYPE

PROOF: The removal of the constraint t; <: ¢, decreases n; by 1. Check-
ing if the types are in the subtyping relation terminates, since <7 is
finite.

O]

	Preface
	Contents
	List of Figures
	List of Theorems
	1 Introduction
	1.1 Contributions
	1.2 Outline

	2 Preliminaries
	2.1 The Language LMR
	2.2 Name Binding with Scope Graphs
	2.2.1 Declarations and References
	2.2.2 Lexical Scoping
	2.2.3 Imports
	2.2.4 Type-dependent Name Resolution
	2.2.5 Resolution Algorithm

	2.3 Type Checking with Constraints
	2.3.1 Constraint Generation
	2.3.2 Constraint Solving by Unification

	3 Constraint Language
	3.1 Constraints for Static Analysis
	3.1.1 Record definition
	3.1.2 Record instantiation
	3.1.3 Field access

	3.2 Constraint Semantics
	3.2.1 Type Checking
	3.2.2 Scope Graph
	3.2.3 Name resolution
	3.2.4 Subtyping

	4 Solver
	4.1 Solver Algorithm
	4.1.1 Type Checking
	4.1.2 Name Resolution
	4.1.3 Subtyping

	4.2 Formal Properties
	4.2.1 Soundness
	4.2.2 Termination
	4.2.3 On Completeness

	5 Evaluation
	5.1 Static Semantics of PCF
	5.1.1 The Language
	5.1.2 Constraints

	5.2 Static Semantics of Featherweight Java
	5.2.1 The Language
	5.2.2 Constraints

	5.3 Prototype Implementation
	5.3.1 Static Analysis with Spoofax
	5.3.2 Benefits of the Constraint-based Approach
	5.3.3 Implementation Review

	6 Related Work
	6.1 Constraint-based Approaches to Static Analysis
	6.2 Other Approaches to Static Analysis

	7 Discussion
	7.1 Constraint Language
	7.2 Solver
	7.3 Prototype Implementation

	Bibliography
	A Proofs
	A.1 Reduction Invariant
	A.2 Reduction Termination

