
Declarative Name Binding for
Type System Specifications

Hendrik van Antwerpen

Declarative Name Binding for
Type System Specifications

Declarative Name Binding for
Type System Specifications

DISSERTATION

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen;
Chair of the Board of Doctorates

to be defended publicly on
Wednesday, 15 January 2025 at 17:30 o’clock

by

Hendrik VAN ANTWERPEN
Master of Science in Computer Science,

Delft University of Technology, The Netherlands
born in Rotterdam, The Netherlands

This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus chairperson
Prof. dr. A. van Deursen Delft University of Technology, promotor
Dr. J.G.H. Cockx Delft University of Technology, copromotor

Independent members:

Prof. dr. A.P. Tolmach Portland State University, USA
Prof. dr. R.B. Findler Northwestern University, USA
Prof. dr. G. Hedin Lund University, Sweden
Dr. W.S. Swierstra Utrecht University
Prof. dr. M.T.J. Spaan Delft University of Technology
Prof. dr. A.E. Zaidman Delft University of Technology (reserve member)

Prof. dr. Eelco Visser (Delft University of Technology) was the original promotor and
supervisor of this research until his untimely passing on 5 April 2022.

The work in this dissertation has been carried out at the Delft University of Tech‑
nology under the auspices of the research school IPA (Institute for Programming
research and Algorithmics). This research was funded by the NWO VICI Language
Designer’s Workbench project (639.023.206).

Typesetting in LATEX using Semplicità, Palatino, Source Sans 3, and Source Code Pro.
Cover design: © Evelien Jagtman – https://evelienjagtman.com.
Printing and binding: Gildeprint – https://www.gildeprint.nl.

ISBN 978‑94‑6384‑704‑9
IPA Dissertation Series 2025‑01

An electronic version of this dissertation is available at https://repository.tudelft.nl.

Copyright © 2024 Hendrik van Antwerpen. Licensed under a Creative Commons
Attribution 4.0 International License. Chapters 2 to 6 retain their original copy‑
right and license as mentioned at the start of each chapter.

https://evelienjagtman.com
https://www.gildeprint.nl
https://repository.tudelft.nl

To Nina, my most supportive reviewer 2

WHAT DOES IT MEAN
Czesław Miłosz

It does not know it glitters
It does not know it flies
It does not know it is this not that.

And, more and more often, agape,
With my Gauloise dying out,
Over a glass of red wine,
I muse on the meaning of being this not that.

Just as long ago, when I was twenty,
But then there was a hope I would be everything,
Perhaps even a butterfly or a thrush, by magic.
Now I see dusty district roads
And a town where the postmaster gets drunk every day
Melancholy with remaining identical to himself.

If only the stars contained me.
If only everything kept happening in such a way
That the so‑called world opposed the so‑called flesh.
Were I at least not contradictory. Alas.

Contents

Summary xi

Samenvatting xiii

Acknowledgments xv

1 Introduction 1
1.1 Name Binding in Programming Languages 1
1.2 Programming Language Specifications 3
1.3 Meta‑Languages . 6
1.4 Research Objective . 7
1.5 Research Method . 8
1.6 Contributions . 9

I Specification 15

2 A Constraint Language for Static Semantic Analysis 17
2.1 Introduction . 17
2.2 Constraints for Static Semantics . 20
2.3 Syntax and Semantics of Constraints . 29
2.4 Resolution Algorithm . 35
2.5 Related Work and Discussion . 43

3 Scopes as Types 47
3.1 Introduction . 47
3.2 Scopes as Types . 51
3.3 Statix: Specification with Scopes and Constraints 69
3.4 Executing Statix Specifications . 72
3.5 Evaluation . 78
3.6 Related Work . 79
3.7 Conclusion . 82

x Contents

II Interpretation 85

4 Knowing When to Ask 87
4.1 Introduction . 87
4.2 Specifying & Scheduling Name Resolution 92
4.3 Statix‑core: A Constraint Language . 99
4.4 Solving Constraints . 104
4.5 Solving Queries: Knowing When to Ask 108
4.6 Implementation and Case Studies . 116
4.7 Related Work . 119
4.8 Conclusion . 123

5 Scope States 125
5.1 Introduction . 125
5.2 Motivation and Scope . 128
5.3 Type Checking with Scope Graphs . 129
5.4 Hierarchical Compilation Units . 133
5.5 Parallel Actor‑Based Algorithm . 140
5.6 Evaluation . 150
5.7 Related Work . 154
5.8 Conclusion . 156

6 Towards Language‑Parametric Semantic Editor Services 159
6.1 Introduction . 159
6.2 Characterizing Editor Services . 161
6.3 Introduction to Statix . 163
6.4 Informing Editor Services . 166
6.5 Code Completion . 167
6.6 Extract Definition . 171
6.7 Related Work . 174
6.8 Conclusion . 176

7 Conclusion 179
7.1 Discussion . 179
7.2 Suggestions for Future Work . 183
7.3 On Research Adoption . 185

Bibliography 189

Curriculum Vitae 201

Summary

Name binding is an integral part of the static semantics of programming languages.
Modern languages commonly feature name binding constructs, such as packages,
modules, and user‑defined types that are essential to develop and maintain large
programs. Static reasoning about name binding is key to support many services
offered by modern programming environments, from type checking, to interactive
code navigation and automatic refactoring. Formal specification of a programming
language is important to understand and reason about the language, as well as to
implement it.

Expressive name binding features pose challenges for both high‑level specifica‑
tions and implementations. The first challenge is finding high‑level abstractions to
describe expressive name binding. The second challenge is correctly implementing
high‑level specifications that were not written with the goal of implementation in
mind. Due to these challenges, specifications are often restricted to a core language
that lacks many of the surface language’s features. The surface language is only de‑
fined by the details of the lower‑level implementation. Those implementations use
specialized data structures and algorithms to support the full language, which lim‑
its code reuse, increases development effort, and makes it more difficult to ensure
correctness.

Meta‑languages aim to address these challenges and bridge the gap between high‑
level specification and implementation by providing reusable abstractions for com‑
mon aspects of programming languages, as well as reusable implementations for
specifications in the meta‑language. Reusable implementations greatly reduce de‑
velopment effort, and their correctness has to be shown only once instead of for each
individual language implementation.

This dissertation proposes a novel meta‑language, Statix, for the specification of
static semantics. It is based on scope graphs, a general model for name binding in
programming languages (Néron et al., 2015). Statix supports the direct modeling of
surface language name binding features, stays close to a familiar inference‑style of
specification, and allows automatically deriving implementations for compilers and
editor services. This dissertation makes the following three contributions.

First, we present the design of the meta‑language Statix. Statix is a logic language
extended with primitives to construct and query scope graphs. Specifications are
written as logical predicates that abstract over evaluation order. The design is accom‑
panied by a declarative semantics that gives a precise description of the meaning of
specifications written in the meta‑language.

xii Summary

Second, we present an operational semantics for Statix that executes specifications
in the meta‑language as type checkers. We prove that the operational semantics is
correct with respect to the declarative semantics. We observe that the operational
semantics is incomplete, but argue based on our experience with case studies that
this is rarely a problem in practice. We present a framework to implement implicitly
parallelized scope‑graph‑based type checkers. We apply this to our Statix implemen‑
tation, resulting in substantially improved runtime performance. Additionally, we
propose an approach towards implementing language‑parametric semantic editor
services based on meta‑language specifications.

Third, we implement these operational semantics and present case studies of sev‑
eral core languages from the literature as well as of a large subset of Java. The case
studies consist of specifications and executable test suites, which allows us to evalu‑
ate both the expressiveness and the practical usability of the meta‑language.

We evaluate our work by assessing whether Statix (i) has a clear and clean under‑
lying theory (principled); (ii) can handle a broad range of common language features
(expressive); (iii) is declarative, but realizable by practical algorithms and tools (exe‑
cutable); (iv) is factored into language‑specific and language‑independent parts, to
maximize reuse (reusable); and (v) can be applied to erroneous programs as well as
to correct ones (resilient). We conclude that our approach is sufficient to express and
interpret common name binding and type system features. The approach scales to
the full surface syntax of real‑world programming languages. As such the meta‑lan‑
guage fulfills criteria (i) to (iv) well, although we do identify potential improvements.
Criterion (v) is only minimally met and remains an important open challenge.

Our work shows that high‑level specification of surface language name binding
features using a meta‑language approach is feasible and useful. It allows easier spec‑
ification of complete languages, and supports reusable practical implementations for
those languages. The following three topics are important areas of future research.
The first is to develop abstractions for language features that are currently hard or
cumbersome to specify in Statix. The second is to improve the integration of Sta‑
tix in development environments. This requires better handling of erroneous pro‑
grams and improved error reporting. It also requires developing program represen‑
tations that make static program information accessible for program transformation
and compilation. The third is to develop approaches for code completion, program
repair, and program generation based on Statix specifications. Further research on
these topics would make this meta‑language approach even more widely applicable.

Samenvatting

Naambinden is een integraal onderdeel van de statische semantiek van program‑
meertalen. Moderne talen bevatten vaak naambindingsconstructies, zoals pakketten,
modules en door de gebruiker gedefinieerde types, die essentieel zijn voor het ont‑
wikkelen en onderhouden van grote programma’s. Statisch redeneren over naambin‑
den is cruciaal voor het ondersteunen van vele diensten die moderne programmeer‑
omgevingen bieden, zoals typechecken, interactieve codenavigatie en automatisch
refactoren. Formele specificatie van een programmeertaal is belangrijk om de taal te
begrijpen, over de taal te redeneren en om deze te implementeren.

Expressieve naambindingsconstructies vormen uitdagingen zowel voor hoogni‑
veau‑specificaties als voor implementaties. De eerste uitdaging is de juiste abstracties
te vinden om expressieve naambinding op hoog niveau uit te drukken. De tweede
uitdaging is het correct implementeren van hoogniveau‑specificaties wanneer deze
specificaties oorspronkelijk niet voor dit doel geschreven zijn. Vanwege deze uitda‑
gingen worden specificaties vaak beperkt tot een kerntaal die veel kenmerken van
de oppervlaktetaal achterwege laat. De oppervlaktetaal is dan alleen gedefinieerd
door de details van de lagerniveau‑implementatie. Die implementaties gebruiken
gespecialiseerde datastructuren en algoritmen om de volledige taal te ondersteunen,
wat de herbruikbaarheid van code beperkt, de ontwikkelinspanning vergroot en het
moeilijker maakt om de correctheid te garanderen.

Meta‑talen beogen deze uitdagingen op te lossen en het gat tussen hoogniveau‑
specificatie en implementatie te dichten door middel van herbruikbare abstracties
voor gemeenschappelijke aspecten van programmeertalen, en herbruikbare imple‑
mentaties voor specificaties in de meta‑taal. Herbruikbare implementaties vermin‑
deren de ontwikkelinspanning aanzienlijk, en hun correctheid hoeft slechts éénmaal
te worden aangetoond en niet meer voor elke individuele taalimplementatie.

Dit proefschrift stelt een nieuwe meta‑taal, Statix, ten behoeve van de specificatie
van statische semantiek voor. De meta‑taal is gebaseerd op scopegrafen, een alge‑
meen model voor naambinden in programmeertalen (Néron e.a., 2015). Statix on‑
dersteunt het direct modelleren van naambindingskenmerken van oppervlaktetalen,
blijft dicht bij een vertrouwde inferentie‑stijl van specificeren, en maakt het mogelijk
om implementaties voor compilers en ondersteuning voor ontwikkelomgevingen au‑
tomatisch af te leiden. Dit proefschrift levert de volgende drie bijdragen.

Ten eerste presenteren we het ontwerp van de meta‑taal Statix. Statix is een lo‑
gische taal uitgebreid met primitieven om scopegrafen te construeren en te queryen.
Specificaties worden geschreven als logische predicaten die abstraheren over de volg‑

xiv Samenvatting

orde van evaluatie. Samen met het ontwerp geven we een declaratieve semantiek die
de betekenis van specificaties in de meta‑taal precies beschrijft.

Ten tweede presenteren we een operationele semantiek voor Statix die specifica‑
ties in de meta‑taal uitvoert als typecheckers. We bewijzen dat deze operationele
semantiek correct is ten opzichte van de declaratieve semantiek. We merken op dat
de operationele semantiek onvolledig is, maar stellen op basis van onze ervaringen
met casestudies vast dat dit in de praktijk zelden een probleem is. We presenteren
een framework voor het implementeren van impliciet geparalleliseerde typecheckers
op basis van scopegrafen. Dit passen we toe op onze Statix‑implementatie, wat leidt
tot aanzienlijk verbeterde executietijden. Daarnaast stellen we een aanpak voor om
taalparametrische semantische ondersteuning voor ontwikkelomgevingen te imple‑
menteren op basis van meta‑taalspecificaties.

Ten derde implementeren we deze operationele semantiek en presenteren we ca‑
sestudies voor verschillende kerntalen uit de literatuur en voor een groot deel van
Java. De casestudies bestaan uit specificaties en uitvoerbare testcases, waarmee we
zowel de expressiviteit als de praktische bruikbaarheid van de meta‑taal evalueren.

We evalueren ons werk door te beoordelen of Statix (i) een duidelijke en zuivere
onderliggende theorie heeft (principieel); (ii) een breed scala aan veelvoorkomende
taalkenmerken aankan (expressief); (iii) declaratief is, maar realiseerbaar met prakti‑
sche algoritmen en tools (uitvoerbaar); (iv) is opgedeeld in taalspecifieke en taalonaf‑
hankelijke delen, om hergebruik te maximaliseren (herbruikbaar); en (v) kan worden
toegepast op zowel foutieve als correcte programma’s (robuust). We concluderen
dat onze aanpak voldoende is om veelvoorkomende naambindings‑ en typesysteem‑
kenmerken uit te drukken en te interpreteren. De aanpak schaalt naar de volledige
oppervlaktesyntax van reële programmeertalen. Als zodanig voldoet de meta‑taal
goed aan criteria (i) tot (iv), hoewel er mogelijke verbeteringen zijn. Aan criterium
(v) wordt slechts minimaal voldaan en dit blijft een belangrijke open uitdaging.

Ons werk laat zien dat hoogniveau‑specificatie van naambindingsfuncties van
oppervlaktetalen met behulp van een meta‑taalbenadering haalbaar en nuttig is. De
meta‑taal maakt het gemakkelijker om complete talen te specificeren en ondersteunt
herbruikbare praktische implementaties voor die talen. De volgende drie onderwer‑
pen zijn belangrijke gebieden voor toekomstig onderzoek. De eerste is het ontwikke‑
len van abstracties voor taalkenmerken die momenteel moeilijk of alleen omslachtig
te specificeren zijn in Statix. De tweede is het verbeteren van de integratie van Statix
in ontwikkelomgevingen. Dit vereist een betere aanpak voor foutieve programma’s
en verbeterde foutmeldingen. Hiervoor zijn programmarepresentaties nodig die sta‑
tische programma‑informatie toegankelijk maken voor programmatransformatie en
‑compilatie. De derde is het ontwikkelen van benaderingen voor codesuggesties, als‑
ook programmareparatie en ‑generatie op basis van Statix‑specificaties. Verder on‑
derzoek kan deze meta‑taalaanpak nog breder toepasbaar maken.

Acknowledgments

Quand on a goûté à la langue, on s’ennuie assez vite avec toute
autre forme de langage.

LAURENT BINET, La septième fonction du langage

Finishing a dissertation is neither easy nor fast. While most of the work happened
in the past ten years, the journey that led to this book really started thirty years ago.
My mother explained me how to tell a story from all of the information I had read for
my school presentations. My dad showed me the joys of programming and solving
technical problems. Although I’ll admit that the first program he showed me solved
only simple arithmetic problems, and did not immediately impress me. Writing kept
eluding me, despite my mom’s best efforts. By the end of high school I would still
panic when presented with a blank page. I had a long way to go. But I would not
have been able to stand here today without what they had taught me.

I discovered my interest in programming languages in Eelco Visser’s compiler
construction courses. Without knowing it, I had dabbled in this area before. At my
job at the time, I had written a program to generate installers for different platforms
from a single XML description. I later tried a similar approach to generate code for
MATLAB bindings of C libraries. “This should certainly save me time and make
the process much more reliable than handwriting the bindings each time,” I thought.
The result was quite the opposite, because I didn’t really know what I was doing.
That changed when I discovered the wonderful world of programming languages. It
started with compiler construction courses in Delft by Eelco and Guido, followed by
a type theory course in Utrecht by Wouter Swierstra. What began as a few interesting
coures, developed into a master thesis and then into an offer for a PhD position.

I am thankful to the many people I got to meet and work with over the course
of my PhD. First of all Eelco. Without him none of this would have happened. His
vision inspired the work I have done, and greatly influenced how I think about the
development of programming languages. He taught me a lot about all aspects of
research, and working with him has been a formative experience. It is a shame that
he does not get to see more of his ideas come to fruition. I hope that my work and
that of others after me can honor his vision and carry his ideas foward.

I want to thank Arie and Jesper for stepping in as promotor and copromotor. Your
support and feedback has enabled me to finish this dissertation even after a delay of
several years. I would also like to express my gratitude to the independent committee

xvi Acknowledgments

members, Andrew Tolmach, Robby Findler, Görel Hedin, Wouter Swierstra, and
Matthijs Spaan, for taking the time to assess my thesis, provide feedback, and be
part of the defense.

I would like to extend many thanks to my collaborators: Andrew, for your con‑
tinued involvement over the years, and Guido and Pierre, for your guidance in the
early years. Arjen, I look back fondly on a stimulating and enjoyable time together,
your critical approach and dry wit were always a pleasure. Casper, thanks for the
good times in and outside the office, and for being a solid part of the team. Robbert,
I appreciate that you would never let us cheat. Aron and Daniël, it was a pleasure
working with you, and it is great to see in which directions you’ve taken this work.

I want to thank the Programming Languages research group in Delft, whom I
have always found to be a kind and supportive group of people who just like to
nerd out together. Vlad, I still miss your sarcasm at times. Peter, your feedback
and improvement suggestions as an early adoptor of Statix have been truly valuable.
Sebastian, your approach to research was an interesting counterpoint to Eelco’s, and
our midnight pub crawl in Florida was the best possible way to start conference life.
Cas, Daco, Danny, Eduardo, Elmer, Gabriël, Jasper, Jeff, Jules, Michael, Paolo, Sven,
and all the others, it has been a pleasure working with all of you. Martijn and Taico,
supervising you was a nice and enriching experience. All the compiler construction
students, thank you for being my guinea pigs. Your (sometimes forceful) feedback
was invaluable for improving the practical aspects of Statix. A big thanks to Roniet
for your support and the pleasant chats we had over the years.

I appreciate all the academics I met outside Delft, who shared some of their ideas
or time with me. Jan Friso Groote, thank you for hosting me for a time at Eind‑
hoven University of Technology. I regularly remember what you told me: if you
cannot work out a solution, you have probably not understood the problem yet. John
Hughes, many thanks for hosting me one summer at Chalmers University of Tech‑
nology. I really enjoyed your delibrate style of working and developing ideas. Thank
you Marianna, Matthew, and João, for being great conference buddies. Thanks to all
the other students and professors I got to interact with at conferences, workshops,
and summer schools.

I want to thank my colleagues at GitHub for the opportunity to continue working
on code intelligence problems. It gave me a chance to learn what it takes to apply
research ideas on a much larger scale. I want to thank my wonderful colleagues from
the Semantic Code team. Thank you Doug, for welcoming me into the group, and
for the many fun and interesting discussions about language design and the practical
problems of implementing language tools. Rick, Rob, Patrick, Nina, and Beka, I had
a lovely time working on code navigation together. Many thanks to my manager
Terry for giving me the support and flexibility over the past year that I needed to be
able to finish this disseration.

xvii

A thank you to all the great friends who have been there for me over the years:
José, Chris, and Pia, I really value your support and good advice during trying times
where I was ready to quit the whole thing. Koen and Aurinke, I am very happy
and grateful for your support at my defense as my paranymphs. Rien and Hugo,
thank you for enriching and having enriched my cultural and musical life. All my
friends from SoSalsa, Monique, Vicki, Gerard, Guusje, Roos, Rostand, Ruben, Hiske,
Asia, Jeanine, Erik, Vivian, Steven, Ruud, Milena, Nathan, KJ, and Angela, I love that
we are still seeing each other after so many years. Mariana, Manu, and Koon, I re‑
ally appreciate that, long after the days of Doerak and Bebop, we still get together
occasionally. Natali, Danne, Valerie, Tom, Emma, Henry, and Sarah, the monthly
no‑birthday parties with you during the pandemic were a welcome diversion, and
it is always nice to see you. My brothers, Dietger, Reinier, and Marten, whom I’ve
known for ages, and my sisters‑in‑law, Krysia, Iris, and Celine, I appreciate you, and
I’m happy I still get to know you better. Katia, Arthur, Fernando, Barbara, Vitto‑
rio, Nadia, Javanshir, and the rest of the poetry crowd, I am glad to have met you
and hope for more good times together. To all the friends I forgot to mention here,
apologies and thank you for being a part of my life.

It is well known that behind every successful student is a good barista. Thank you
to Lucas and the others who tended the coffee cart downstairs in the faculty building,
and to Sylwia and the staff of Harvest Cafe. It is great to be able to escape work in
the afternoon and find a good coffee and a friendly chat waiting for you.

Finally I want to thank Nina. I am happy that you are a part of my life for so many
years now. Without your support this dissertation would not exist. You encouraged
me when I needed a push, and consoled me when I was completely through with all
of it. Your feedback was sharp and to the point, and helped me many times improve
the content or the process of my work. I could not be more thankful to have you by
my side.

Hendrik van Antwerpen
Rotterdam, November 2024

1Introduction

…, yet a computer program is surely an unsatisfying way to define
semantics.

DONALD E. KNUTH

Name binding is an integral part of the static semantics of programming languages1.
Common name binding features in the surface syntax of modern languages pose
challenges for formal specifications as well as implementations. As a result, speci‑
fications are often restricted to a core language that lacks many of the surface lan‑
guage’s features. Implementations require specialized data structures and must be
structured specifically to support the full language. On top of that, name binding
information is used beyond the compiler to support editor services. This disserta‑
tion proposes a meta‑language for the specification of static semantics. It is based
on scope graphs and supports the direct modeling of surface language name bind‑
ing features. It stays close to a familiar inference‑style of specification and allows
deriving implementations for compilers and editor services.

1.1 Name Binding in Programming Languages

The development of programming languages began in earnest in the late 1940s and
early 1950s, when the first programmable systems were developed. These systems al‑
lowed writing programs for a computer on that computer itself, and have them trans‑
lated to low‑level instructions by another program, the compiler. Computer pro‑
gramming was liberated from the low‑level specifics of the computer it ran on, and
programming languages became ”high‑level”, offering constructs that abstracted
over low‑level instructions. (For a survey of those early developments, see Knuth
and Pardo, 1980.)

Programming Environment An overview of modern programming environments is
shown in Figure 1.1. A parser takes the source text and turns it into a structured ab‑
stract syntax tree (AST), according to the rules of the language grammar. The checker
verifies that the program is well‑formed, for example checking that names are bound
and types are correct. These properties are described by the static semantics of a pro‑
gramming language, and ensure that certain kinds of errors cannot occur when the

1We will generally use “language” in the sense of programming languages. If another kind of lan‑
guage is meant, we will qualify it explicitly as, for example, “natural language”.

2 1 Introduction

source parser checker
code gen

interpreter

executable

frontend
backend

editor

Figure 1.1: A schematic overview of the modern programming environment.

program is executed. The parser and checker together are usually called the frontend
of the compiler. A code generator translates the program into an executable binary. Al‑
ternatively, the program is directly executed by an interpreter. The execution behav‑
ior of a programming language is described by its dynamic semantics. The compiler
or interpreter are usually called a compiler’s backend.

Besides this batch process of compilation, there is also interaction with the editor.
The editor provides services based on information from the compiler frontend. One
class of services helps users understand code by, for example, annotating it with
inferred information, or supporting code navigation. Other services transform code,

1 // p/A.java
2 package p;
3 public class A {
4 public int x;
5 }
6

7 // q/B.java
8 package q;
9 import p.*;

10 public class B {
11 public int y;
12 public int m(int y) {
13 return new A().x + y;
14 }
15 }

Figure 1.2: An example of name binding
in Java.

such as automatic refactoring and code repair.
It is important to realize that these editors and
editor services are often developed separately
from the compiler as part of an integrated
development environment (IDE). That means
that static information, such as type and name
binding, is no longer purely internal to the
compiler.

Name Binding With the development of pro‑
gramming languages came the development
of more complex name binding features.
From variables, via subroutines, to packages,
modules, and user‑defined types, languages
offered more and more possibilities for ab‑
straction and ways to structure large pro‑
grams. To make things more concrete, we il‑
lustrate name binding features commonly found in modern surface languages using
an example, given in Figure 1.2.

1.2 Programming Language Specifications 3

Name binding describes the meaning of names in a program. Names are intro‑
duced by means of declarations and used through references. A reference is said to be
bound to its declaration, and the process to determine these bindings is called name
resolution. For example the reference y on line 13 is bound to the declaration on line 12.
If a declaration is visible in a subtree of the AST we call it lexically scoped. An exam‑
ple is the parameter y on line 12, which is visible in the method body. Scoping is
non‑lexical if declarations are visible in other parts of the AST. Examples are the ref‑
erences A and x on line 13. The former is bound to the declaration A on line 3, which
is exported as part of a named collection, the package p, and is visible because of the
import on line 9. The latter is bound to the declaration x on line 4 through the expres‑
sion type and is called type‑dependent. Finally, if multiple declarations are available
for a reference, disambiguation determines which declaration the reference is bound
to. An example is the y reference on line 13, with possible declarations on lines 11
and 12, where the declaration on line 12 is said to shadow the one on line 11.

Name binding can be complex. To prove something about a program’s behavior,
or to implement a compiler or other tool for a language, we need more than illustra‑
tive examples. At that point, language specifications become important.

1.2 Programming Language Specifications

How can we give a description of what the names in a program, and the program
source more generally, mean? As long as programming languages exist, people have
produced descriptions of the meaning of programs in those languages. When these
descriptions aim to give a precise and complete coverage of (part of) a language, we
call them specifications. Specifications can be used for different purposes, and the
format of the specification determines how suitable a specification is for a certain
purpose. Therefore, before we discuss specifications in more detail, we should think
about the possible uses that a specification may have:

• Explain the language to humans so they can understand and write programs
in the language.

• Guide developers who implement tools such as compilers and IDEs for the
language.

• Enable reasoning about properties of the language, its implementations, or pro‑
grams in the language.

• Automatically derive implementations or proofs for the language.

Depending on the intended use, specifications may vary in formality, level of abstrac‑
tion, and coverage. For example, a specification intended for people programming in
the language should be high‑level and abstract over details that may be essential for

4 1 Introduction

compiler engineers. Specifications intended for reasoning should be formal, while a
specification for a compiler engineer could be less formal, although both should be
precise and unambiguous. None of these differences make one specification better
than another, as each has their own purpose. We now discuss two different specifi‑
cation styles and where they are positioned with respect to the previously discussed
use cases.

Natural Language Specifications in a natural language have existed since the early
days of programming languages. Examples are the reports on ALGOL (Backus et al.,
1960; van Wijngaarden et al., 1976), and, more recently, specifications of Java (Gosling
et al., 2018), C# (ECMA International, 2017), and Scala (Odersky et al., 2019). The
use of natural language is particularly valuable for explaining the programming lan‑
guage to others. The introduction to the ALGOL 60 report states that the language
in the report is guided by “ease of mutual understanding and not by computer lim‑
itations”, and one of its explicit purposes is to be a “reference and guide for com‑
piler builders.” (Backus et al., 1960). However, making a specification in a natu‑
ral language precise and unambiguous is challenging. The revised report on AL‑
GOL 68 (van Wijngaarden et al., 1976) acknowledges this when it says that the “se‑
mantics [is] expressed in natural language, but making use of some carefully and
precisely defined terms and concepts.” Interestingly, they note “that this method
maybe difficult for the uninitiated reader.” The C# language specification, which is
explicitly aimed at a broad audience of “implementers, academics, and application
programmers”, therefore compensates for the inaccessibility of a precise and tech‑
nical description by including “a considerable amount of explanatory material that,
strictly speaking, is not necessary in a formal language specification.” A specifica‑
tion in natural language can be accessible, but making it precise can easily harm this
accessibility, and result in large documents (the Java Language Specification comes
in at over 750 pages). The lack of formality of natural language makes these specifica‑
tions unfit for reasoning about the language, and requires additional formalization
(and indeed, sometimes multiple such formalizations exist for various subsets of a
language).

To illustrate how name binding can be specified in natural language, consider the
following rule for Java:

A declaration d of a local variable or exception parameter named n shad‑
ows, throughout the scope of d, (a) the declarations of any other fields
named n that are in scope at the point where d occurs, and (b) the declara‑
tions of any other variables named n that are in scope at the point where
d occurs but are not declared in the innermost class in which d is declared.
(Gosling et al., 2018, p. 149)

1.2 Programming Language Specifications 5

The need for precision, and the fact that the rule is formulated in terms of concrete
language constructs, makes it quite verbose. For a big surface language with many
constructs to describe, this results in a specification lacking conciseness.

Formal Logic Language specifications using formal languages have existed almost
as long as those in natural language. Building on the success of using the formal‑
ism of context‑free grammars to describe syntax, researchers started looking for for‑
malisms that allowed the description of semantics as well. The conference on For‑
mal Language Description Languages for Computer Programming (T.B. Steel, 1966) was
a seminal moment in the development of that field. (For a historical account of the
development of programming semantics, see Astarte, 2019.) Compared to specifica‑
tions in natural language, formal specifications tend to be more precise, more concise
for their level of detail, and lend themselves better for reasoning. An example is the
definition of Standard ML (Milner et al., 1997), which gives a precise definition of
both static and dynamic semantics of the ML language. Its introduction explicitly
dismisses the use of natural language as “ill‑suited for use by an implementer, or by
someone who wants to formulate laws for equivalence of programs, or by a program‑
mer who wants to design programs with mathematical rigour.”

Formally describing surface language name binding is challenging. Anything be‑
yond basic lexical scoping does not fit the commonly used judgment2 Γ ` e : t. First,
the rules need to be restructured to ensure relevant non‑lexical binding information
is available in the context. The ML specification, for example, uses in‑ and output
environments in several places, giving the rules a much more algorithmic flavour.
Second, we need a representation for this richer context, together with rules for its
usage. The authors of the ML specification discuss this point when they find a fic‑
tional language definer in the following situation:

Here, he meets a problem; notation of some kind must be used to denote
and describe these meanings —but not a programming language nota‑
tion, unless he is passing the buck and defining one programming lan‑
guage in terms of another. Moreover, it is not enough just to write down
mathematical definitions. The world of meanings only becomes mean‑
ingful if the objects possess nice properties, which make them tractable.
[…] So the language‑definer really has to develop a small theory of his
meanings, in the same way that a mathematician develops a theory. […]
Of course he can take many objects and their theories directly from math‑
ematics, such as functions, relations, trees, sequences, But he must also
give some special theory for the objects which make his language partic‑

2The judgement Γ ` e : t states that an expression e has type t in a typing environment Γ. The typing
environment Γ is a top‑down constructed mapping from names to types, which means names only flow
downwards to into subtrees.

6 1 Introduction

ular, as we do for types, structures and signatures in this book; otherwise
his language definition may be formal but will give no insight. (Milner
et al., 1997, p. xi)

This quote observes that not every formal language is necessarily suitable or useful
to describe a programming language. The “small theory of his meanings” are the rep‑
resentations and abstractions that allow the specification to communicate the intent
of the language and be useful for both understanding and theory development.

Between general mathematics and language specific theories are those that cap‑
ture the commonalities between many programming languages. The use of such
theories raises the level of abstraction of a specification, and promotes shared un‑
derstanding by providing a common language to describe and compare different
programming languages.

1.3 Meta-Languages

A specification does not automatically give us an implementation that makes a lan‑
guage usable in practice. Implementing a specification is a non‑trivial and laborious
task, for various reasons. First, a specification does not always cover the full language
that is accepted by the compiler frontend. We call the language that is covered by the
specification the core language, and the language that is accepted by the compiler the
surface language. The latter is typically defined by its mapping into the core lan‑
guage. For example, the specification may always require explicit type annotations,
while these are optional in the source and expected to be inferred. Second, high‑level
specifications can be very different from the algorithm that implements the specified
behavior. An example is a constraint solving algorithm that implements a set of non‑
algorithmic subtyping rules. Third, a single implementation is not always enough
to support all aspects of a development environment. The algorithm to support au‑
tomatic refactoring is probably different from the algorithm that checks a complete
program. Fourth, implementations are often specific to one language, requiring im‑
plementers to deal with low‑level details that are common between languages. En‑
suring that an implementation is correct is a non‑trivial task, that requires extensive
testing or proof work.

A class of meta‑languages has been developed to address the challenges of high‑
level specifications, as well as the gap between specification and implementations.
These meta‑languages aim to provide reusable abstractions for common aspects of
programming languages, as well as reusable implementations for specifications writ‑
ten in the meta‑language. The design of meta‑languages involves finding a balance
between various aspects, such as what can be expressed, what details are abstracted
away, and how the specification can be executed. An early example of a meta‑lan‑
guage are the attribute grammars of Knuth (1968) that provide an abstraction to spec‑

1.4 Research Objective 7

ify attributes of AST nodes by means of equations, which supports reasoning and
allows an executable implementation as well. A meta‑language allows language en‑
gineers to focus on the design and specification of a language, while greatly reducing
the effort required to implement it. Furthermore, correctness has to be shown only
once, instead of for each individual language implementation.

The development of interactive programming environments has led to the rise
of language workbenches as platforms to develop programming languages (Fowler,
2005). Language workbenches offer an integrated programming environment for
meta‑languages, supporting meta‑languages for different aspects of a programming
language, and deriving not just static checkers or interpreters, but complete IDEs
based on language specifications. Nowadays several mature language workbenches
exist (Erdweg, van der Storm, Völter, et al., 2015), including the Spoofax Language
Workbench (Kats and Visser, 2010), in the context of which the work in this disserta‑
tion has been developed.

1.4 Research Objective

The goal of this dissertation is to develop a meta‑language for the specification of
static semantics that (i) has a clear and clean underlying theory (principled); (ii) can
handle a broad range of common language features (expressive); (iii) is declarative, but
realizable by practical algorithms and tools (executable); (iv) is factored into language‑
specific and language‑independent parts, to maximize reuse (reusable); and (v) can be
applied to erroneous programs as well as to correct ones (resilient), goals previously
outlined by Néron et al. (2015) and Zwaan and van Antwerpen (2023).

Our starting point is the theory of scope graphs (Néron et al., 2015), a language‑in‑
dependent model for name binding. Scope graphs model the binding structure of
a program as a graph and define name resolution as a path finding problem in that
graph, controlled by resolution policies that determine reachability and disambigua‑
tion. Scope graphs are formally defined by a resolution calculus and come with a res‑
olution algorithm. Importantly, scope graphs were designed with our stated goals in
mind. We now look at each of the goals in more detail and discuss what they mean
for the design of our meta‑language.

A principled design is based on a small set of, ideally orthogonal, concepts. It has
a clear, formal description, gives unambiguous meaning to specifications written in
the meta‑language, and can be used to verify correctness of implementations.

An expressive design allows the specification of a wide range of surface language
features. This means that lexical and non‑lexical name binding patterns, as well as
common type system features such as nominal and structural types, subtyping, and
generics. The ability to model the interaction between names and types is important.

8 1 Introduction

A declarative design allows specifications to be understood in terms of the possi‑
ble models for a program, typically described by a declarative semantics, without
consideration of a particular interpretation of the specification. The abstractions pro‑
vided by the meta‑language should match the domain, allow concise specifications,
and avoid the need for cumbersome encodings. Specifically, we aim for a design that
allows a specification to remain close to the familiar Γ ` e : t judgments, without the
need for the explicit bookkeeping that is typically associated with non‑lexical name
binding features.

An executable design allows for the specifications to be executed as type check‑
ers or editor services. This means the language has an operational semantics and
algorithms implementing it. While matching the performance of hand‑written, op‑
timized compilers is not a goal, performance should be good enough to allow these
algorithms to be usable in practice. The declarative nature of the design allows for
different interpretations beyond type checking, for example for code completion or
program repair.

A reusable design clearly separates language‑specific specification from generic,
language‑independent implementation. It also allows reuse of shared logic within
and between specifications.

Finally, a resilient design is applicable to incorrect programs as well as correct
ones. This means useful partial information is available in an interactive context. Ad‑
ditionally, partial solutions may be a starting point for developing autocompletion
and program repair techniques.

These goals can easily conflict with each other. The more expressive the meta‑
language, the harder it can be to make it executable, and high‑level abstractions can
conflict with modeling the idiosyncrasies of some programming languages. The chal‑
lenge is therefore to strike an interesting and useful balance between these goals. As
such, the work we present is necessarily just one design point among many other pos‑
sible designs. In Section 7.1 we return to these goals and consider to which extent
the goals are realized by our design.

1.5 Research Method

The research in this dissertation is conducted through the design and implementation
of a meta‑language. The idea of this approach is that the meta‑language is designed,
implemented, and put in practice continuously. That means that all the different
aspects of the meta‑language are considered from the start to inform design choices
and trade‑offs. This leads to various artifacts and applications, which are presented
in the following chapters.

First, we develop a formal description of the syntax and semantics (declarative
and operational) of the meta‑language. Writing these descriptions gives feedback

1.6 Contributions 9

on the complexity and theoretical elegance of the design. It helps us understand
if the design is easy to understand and explain and if is it general enough. These
descriptions are used to reason about the desired properties of the language. This
helps us understand if the semantics are well defined, if the operational semantics
are correct, confluent, and terminating.

Second, we implement the design to allow us and other users to experiment with
the language. Writing an implementation is, first of all, a reality check. Every detail
must be accounted for. One cannot rely on conventions or assumptions to make it
work. An implementation is a valuable tool to increase understanding of the system’s
behavior. It gives the ability to experiment with different cases faster than working
them out by hand. Benchmarks can be designed, both on artificial as well as actual
code, to learn about the system’s performance. Finally, an implementation makes
the system available to other users, which is an important channel for feedback and
new ideas.

Third, we conduct extensive case studies that test the design against existing, full‑
featured programming languages. The design process is typically driven by small,
representative, examples, or difficult cases that are challenging for the state of the
art. Developing extensive case studies mitigates the risk that the design is over‑
specialized for these initial cases. It forces us to consider many common cases, and
shows how the meta‑language design works for large languages and extensive spec‑
ifications.

All the work is implemented as part of the Spoofax language workbench (Kats
and Visser, 2010). Spoofax allows us to build on existing approaches for syntax spec‑
ification and program transformations, as well as existing language specifications
that have been developed in it. Providing the meta‑language as part of a language
workbench reduces the work required to integrate it in a complete compiler pipeline,
and lowers the barrier of entry for other researchers, students, and industry.

1.6 Contributions

The work presented in this dissertation addresses the challenges of the previous sec‑
tion by developing a meta‑language, Statix, for the specification of static semantics
of programming languages. The goal of Statix is to provide first class support for
high‑level name binding concepts, while abstracting over operational concerns com‑
monly associated with implementing name binding. In particular, this dissertation
makes the following three high‑level contributions:

1. We present a formal specification language, with a precise declarative seman‑
tics, for defining static semantics. It provides high‑level abstractions for ex‑
pressing name binding structure and name resolution queries.

10 1 Introduction

2. We present an operational semantics for the meta‑language that interprets spec‑
ifications as type checkers. It abstracts over evaluation order and offers implicit
parallelization.

3. We present case studies that show this approach is sufficient to express and
interpret common name binding and type system features, and that it scales
to the full surface syntax of real‑world programming languages.

The chapters are divided into two parts. The main focus of the first part is spec‑
ification, that of the second part is interpretation. We give a short introduction and
summarize the main contributions of each chapter. All chapters have been published
previously in peer reviewed venues and are included in their original form, except
for formatting changes to fit this dissertation. Each chapter discusses contributions
and related work in detail, and can be read independently. The chapters’ core con‑
tributions are independent, but there is some overlap in motivation, background,
examples, and discussion of related work. The original publication and the specific
contributions by this dissertation’s author for each chapter are mentioned below.

The specification chapters are concerned with meta‑language design and its ex‑
pressiveness for language specification. These chapters show the meta‑language, its
declarative semantics, and example specifications of programming languages in the
meta‑language:

• Chapter 2 presents a constraint language based on scope graphs. This is our
first attempt at designing a meta‑language for static semantics using scope
graph concepts. Specifications are written as a straightforward mapping from
an AST to a constraint term. The constraint language consists of term equality
constraints, as well as scope graph assertions, and resolution constraints. We
observe that the name binding model of scope graphs itself is not enough to
express the resolution of all names. Some names (e.g., class members) depend
on type information, preventing a strict separation of name resolution and type
checking. Our approach interleaves name resolution and type checking, and
supports limited interaction by allowing edge targets in the scope graph to be
instantiated during analysis.

Published as Hendrik van Antwerpen, Pierre Néron, Andrew P. Tolmach, Eelco
Visser, and Guido Wachsmuth (2016). “A constraint language for static seman‑
tic analysis based on scope graphs.” In: Proceedings of the 2016 ACM SIGPLAN
Workshop on Partial Evaluation and Program Manipulation. DOI: 10.1145/2847538
.2847543.

The author of this dissertation contributed substantially to the constraint lan‑
guage design, and carried out the entirety of the implementation. As custom‑
ary in the research group, the underlying idea was developed jointly with the

https://doi.org/10.1145/2847538.2847543
https://doi.org/10.1145/2847538.2847543

1.6 Contributions 11

other authors and the publication was written in close collaboration with the
co‑authors.

• Chapter 3 presents the meta‑language Statix, a logic language with first class
support for scope graph assertions and queries. Specifications are written as
predicates over the AST, but predicates are not limited to the AST and predi‑
cates over synthetic terms such as types are also allowed. We present a declar‑
ative semantics that describes the logical meaning of Statix programs. Com‑
pared to the previous constraint language, Statix is much more expressive, sup‑
porting the specification of, for example, type relations beyond equality such
as structural typing, and polymorphism.

While working on Statix we observed that the named import mechanism of
Néron et al. (2015) could be expressed in Statix using a combination of queries
and scope graph assertions depending on the query results. This sidesteps the
possible exponential runtime of the original import mechanism, regularly trig‑
gered by users—even though it is always easy to mitigate. Therefore, named
imports were dropped from Statix.

Published as Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet,
and Eelco Visser (2018). “Scopes as types.” In: Proceedings of the ACM on Pro‑
gramming Languages OOPSLA. DOI: 10.1145/3276484.

The author of this dissertation contributed substantially to the language design
and carried out the entirety of the implementation. As customary in the re‑
search group, the underlying idea was developed jointly with the other authors
and the publication was written in close collaboration with the co‑authors.

The interpretation chapters are concerned with possible operational semantics for
the meta‑language:

• Chapter 4 presents an operational semantics that allows the interpretation of
Statix programs as executable type checkers. This operational semantics ab‑
stracts over the evaluation order by dynamically scheduling predicate resolu‑
tion based on instantiation of logical variables and scopes. Determining the
completeness of scopes during resolution was the main challenge to ensure
soundness. Our approach uses a combination of static restrictions on scope
assertions with dynamic tracking of scope values to prevent the use of incom‑
plete scope data and ensure stable query answers that cannot be invalidated
by the remaining unresolved predicates. This makes the operational seman‑
tics incomplete with respect to the declarative semantics, but the various case
studies have shown that these restrictions do not prevent us from specifying
the languages we aim to support.

https://doi.org/10.1145/3276484

12 1 Introduction

Published as Arjen Rouvoet, Hendrik van Antwerpen, Casper Bach Poulsen,
Robbert Krebbers, and Eelco Visser (2020a). “Knowing when to ask: sound
scheduling of name resolution in type checkers derived from declarative speci‑
fications.” In: Proceedings of the ACM on Programming LanguagesOOPSLA. DOI:
10.1145/3428248.

The author of this dissertation contributed substantially to the idea and carried
out the majority of the work for the case studies. The reformulation and formal‑
ization of Statix was a collaborative effort with the other authors, as customary
in the research group. The proof and prototype implementation were mostly
the first author’s work. The publication writing was a joint effort.

• Chapter 5 presents a framework to implicitly parallelize scope‑graph‑based
type checkers. Our approach exploits the fact that scope graphs provide a com‑
mon representation of the binding structure to infer dependencies and decide
scheduling of parallel type checkers. We apply this framework to Statix, which
results in the implicit parallelization of all Statix specifications. Benchmark re‑
sults show that significant scaling can be achieved without the effort necessary
for tailored parallelization. Additionally, the specification for a significant sub‑
set of Java developed for this benchmark supports our claim that Statix is able
to handle the surface syntax of a real programming language.

Published as Hendrik van Antwerpen and Eelco Visser (2021). “Scope States:
Guarding Safety of Name Resolution in Parallel Type Checkers.” In: 35th Euro‑
pean Conference on Object‑Oriented Programming (ECOOP 2021). Dagstuhl, Ger‑
many. DOI: 10.4230/LIPIcs.ECOOP.2021.1.

• Chapter 6 proposes to use Statix specifications for semantic editor services,
such as code completion. It outlines an interpretation that would make this
possible and discusses the challenges for realizing it. We argue that the name
binding support of Statix allows a direct reinterpretation without the need, en‑
countered by other approaches, to adapt the language specification itself.

Published as Daniel A. A. Pelsmaeker, Hendrik van Antwerpen, and Eelco
Visser (2019). “Towards Language‑Parametric Semantic Editor Services Based
on Declarative Type System Specifications (Brave New Idea Paper).” In: 33rd
European Conference on Object‑Oriented Programming (ECOOP 2019). Dagstuhl,
Germany. DOI: 10.4230/LIPIcs.ECOOP.2019.26.

The first author of this publication and the author of this dissertation contrib‑
uted equally to the idea and the writing of this work.

Finally, in Chapter 7 we draw conclusions and discuss future work.

https://doi.org/10.1145/3428248
https://doi.org/10.4230/LIPIcs.ECOOP.2021.1
https://doi.org/10.4230/LIPIcs.ECOOP.2019.26

1.6 Contributions 13

All the work presented in this dissertation has been incorporated in the Spoofax
Language Workbench (Kats and Visser, 2010). Downloads and documentation can
be found at https://www.spoofax.dev/.

https://www.spoofax.dev/

I
Specification

2A Constraint Language for Static
Semantic Analysis

Abstract In previous work, we introduced scope graphs as a formalism for describing pro‑
gram binding structure and performing name resolution in an AST‑independent way. In this
paper, we show how to use scope graphs to build static semantic analyzers. We use constraints
extracted from the AST to specify facts about binding, typing, and initialization. We treat
name and type resolution as separate building blocks, but our approach can handle language
constructs—such as record field access—for which binding and typing are mutually depen‑
dent. We also refine and extend our previous scope graph theory to address practical concerns
including ambiguity checking and support for a wider range of scope relationships. We de‑
scribe the details of constraint generation for a model language that illustrates many of the
interesting static analysis issues associated with modules and records.

2.1 Introduction

Language workbenches (Erdweg, van der Storm, Völter, et al., 2015) are tools that
support the implementation of full‑fledged programming environments for (domain‑
specific) programming languages. Ongoing research investigates how to reduce im‑
plementation effort by factoring out language‑independent implementation concerns
and providing high‑level meta‑languages for the specification of syntactic and se‑
mantic aspects of a language (Visser et al., 2014). Such meta‑languages should (i) have
a clear and clean underlying theory; (ii) handle a broad range of common language
features; (iii) be declarative, but be realizable by practical algorithms and tools; (iv) be
factored into language‑specific and language‑independent parts, to maximize reuse;
and (v) apply to erroneous programs as well as to correct ones.

In recent work we showed how name resolution for lexically‑scoped languages
can be formalized in a way that meets these criteria (Néron et al., 2015). The name
binding structure of a program is captured in a scope graph which records identifier
declarations and references and their scoping relationships, while abstracting away
program details. Its basic building blocks are scopes, which correspond to sets of pro‑
gram points that behave uniformly with respect to resolution. A scope contains iden‑

Published as Hendrik van Antwerpen, Pierre Néron, Andrew P. Tolmach, Eelco Visser, and Guido
Wachsmuth (2016). “A constraint language for static semantic analysis based on scope graphs.” In: Pro‑
ceedings of the 2016 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation. DOI: 10.1145
/2847538.2847543. Copyright © 2016 Owner/Author.

https://doi.org/10.1145/2847538.2847543
https://doi.org/10.1145/2847538.2847543

18 2 A Constraint Language for Static Semantic Analysis

tifier declarations and references, each tagged with its position in the original AST.
Scopes can be connected by edges representing lexical nesting or import of named
collections of declarations such as modules or records. A scope graph is constructed
from the program AST using a language‑dependent traversal, but thereafter, it can
be processed in a largely language‑independent way. A resolution calculus gives a
formal definition of what it means for a reference to resolve to a declaration. Reso‑
lutions are described as paths in the scope graph obeying certain (language‑specific)
criteria; a given reference may resolve to one or many declarations (or to none). A
derived resolution algorithm computes the set of declarations to which each reference
resolves, and is sound and complete with respect to the calculus.

In this paper, we refine and extend the scope graph framework of Néron et al.
(2015) to a full framework for static semantic analysis. In essence, this involves uni‑
ting a type checker with our existing name resolution machinery. Ideally, we would
like to keep these two aspects separated as much as possible for maximum modular‑
ity. And indeed, for many language constructs, a simple two‑stage approach—name
resolution using the scope graph followed by a separate type checking step—would
work. But the full story is more complicated, because sometimes name resolution
also depends on type resolution. For example, in a language that uses dot notation
for object field projection, determining the resolution of x in the expression r.x re‑
quires first determining the object type of r, which in turn requires name resolution
again. Thus, we require a unified mechanism for expressing and solving arbitrarily
interdependent naming and typing resolution problems.

To address this challenge, we base our framework on a language of constraints.
Term equality constraints are a standard choice for describing type inference prob‑
lems while abstracting away from the details of an AST in a particular language.
Adopting constraints to describe both typing and scoping requirements has the ad‑
vantage of uniform notation, and, more importantly, provides a clean way to com‑
bine naming and typing problems. In particular, we extend our previous work to
support incomplete scope graphs, which correspond to constraint sets with (as yet)
unresolved variables.

Our new framework continues to satisfy the criteria outlined above. (i) The res‑
olution calculus and standard term equality constraint theory provide a solid lan‑
guage‑independent theory for name and type resolution. (ii) Our framework sup‑
ports type checking and inference for statically typed, monomorphic languages with
user‑defined types, and can also express uniqueness and completeness requirements
on declarations and initializers. The framework inherits from scope graphs the abil‑
ity to model a broad range of binding patterns, including many variants of lexical
scoping, records, and modules. (iii) The constraint language has a declarative seman‑
tics given by a constraint satisfaction relation, which employs the resolution calculus
to define name resolution relative to a scope graph. We define a constraint resolution

2.1 Introduction 19

this paper

Constraints
AST

Name & Type
Assignment

extract solve

Figure 2.1: Architecture of our constraint‑based approach to static semantic analysis. A lan‑
guage‑specific extraction function translates an abstract syntax tree to a set of constraints. The
generic constraint solver (independent of the source language), solves the constraints and pro‑
duces a name and type assignment.

algorithm based on our previous name resolution algorithm, extended to support pa‑
rameterization by a language‑specific policy controlling scope reachability and visi‑
bility, combined with a standard unification algorithm. (iv) The constraint language
is intended as an internal language for static semantic analysis tools (Fig. 2.1). Given
the abstract syntax tree of a program, a language‑specific extractor produces a set of
constraints that express the name binding and types of the program. A language‑in‑
dependent solver attempts to find a solution for the set of extracted constraints, and
produces a (partial) name and type assignment. Note that the constraint language is
not intended as a domain‑specific meta‑language (such as NaBL; Konat et al., 2012)
to be used by language designers using a language workbench. Rather, it is intended
to be used as an internal language for the implementation of such meta‑languages.
(v) The application to erroneous programs is work in progress.

Contributions The specific technical contributions of this paper are the following:

• We introduce a constraint notation for the specification of scope graphs and
name resolution that is complementary to the description of traditional typing
constraints.

• We extend the scope graph framework of Néron et al. (2015) with uniqueness
and completeness constraints to express properties such as “there are no du‑
plicate declarations in this scope” or “every declared field in this record is ini‑
tialized.”

• We introduce generalized scope graph edge labels to model a wide range of
scope combination policies including transitive and non‑transitive imports, and
non‑overriding includes.

20 2 A Constraint Language for Static Semantic Analysis

• We give a specification for satisfiability of combined sets of name and type
resolution constraints.

• We extend the name resolution algorithm of Néron et al. (2015) to be parametric
over scope reachability and visibility policies defined over (generalized) scope
graph edge labels.

• We give an algorithm for solving combined name and type resolution problems
and prove that it is sound with respect to the satisfiability specification.

Outline In Section 2.2, we introduce the constraint language using example pro‑
grams in a small model language. In Section 2.3, we formally define the syntax and
semantics of the constraint language by defining a satisfaction relation on constraints
and an extended resolution calculus. In Section 2.4 we develop a constraint solver
and prove that it is sound with respect to the semantics. In Section 2.5 we relate this
work to previous work by ourselves and others, and discuss limitations and ideas
for future work.

2.2 Constraints for Static Semantics

In this section we introduce our approach to constraint‑based name and type reso‑
lution. We show how scope graph constraints are used to model name binding and
combine them with typing constraints to model type consistency. We illustrate the
ideas using LMR (Language with Modules and Records), a small model language
that is a variant of the LM (Language with Modules) of Néron et al. (2015). LMR
does not aspire to be a real programming language, but is designed to represent typ‑
ical and challenging name and type resolution idioms.

In the rest of this section we study name and type resolution for a selection of
LMR constructs using a series of examples. The full grammar of LMR is defined
in Fig. 2.5 and a constraint extraction algorithm for the entire language is given in
Fig. 2.6. Along the way we gradually introduce the concepts of the constraint lan‑
guage. The full syntax of the constraint language is defined in Fig. 2.7. Subsequent
sections formalize the constraint language and its semantics.

2.2.1 Declarations and References

We first recall the concepts of the scope graph approach (Néron et al., 2015), and
adapt them to a constraint‑based framework. Consider the example in Fig. 2.2, which
shows a simple LMR program with two global declarations (top), and, in the boxes
below it, the constraints extracted from it and their solution. Subscripts on expres‑
sions and identifiers represent AST positions. Thus, x1 , x4 , andx8 are different occur‑

2.2 Constraints for Static Semantics 21

rences of the same name x. We represent scope graph constraints diagrammatically
by the scope graph they specify.

The nodes of a scope graph G represent the three basic notions derived from the
program abstract syntax tree (AST): scopes, declarations, and references:

• A scope is an abstraction of a set of nodes in the AST that behave uniformly
with respect to name binding. Scopes are denoted by identifiers drawn from
an abstract enumerable set. In a scope graph diagram, scopes are represented
by circles with numbers representing their identity, e.g. 1 . S(G) denotes the
set of scopes of G.

• A declaration is an occurrence of an identifier that introduces a name. We write xD
i

for the declaration of name x at position i in the program. We omit the posi‑
tion i when it is unimportant in the context. In diagrams, a declaration is rep‑
resented by a box with an incoming arrow, e.g. x1 . D(G) denotes the set of
declarations of G.

• A reference is an occurrence of an identifier referring to a declaration. We write xR
i

for a reference with name x at position i. Again, we sometimes omit the posi‑
tion i. In diagrams, a reference is represented by a box with an outgoing arrow,
e.g. x4 . R(G) denotes the set of references of G.

Scope Graph Constraints The edges of a scope graph determine the connections be‑
tween scopes, declarations, and references. Edges are specified directly by means of
scope graph constraints (CG in the grammar of Fig. 2.7), where the ground terms D,
R, and S represent declarations, references, and scopes, respectively. For now, we
only consider the two basic edges that connect declarations and references to scopes:

• A declaration constraint s xD specifies that declaration xD belongs to scope s.
Graphically: s x .

• A reference constraint xR s specifies that reference xR belongs to scope s.
Graphically: x s .

The “solution” to a set of scope graph constraints is awell‑formed scope graph, i.e. one
in which each declaration and reference belongs to (is connected by an edge with)
exactly one scope. Note that the existence of nodes (declarations, references, and
scopes) of the scope graph is specified implicitly by their appearance in an edge con‑
straint. For convenience, we sometimes write Sc(xD) = s for s xD and Sc(xR) = s
for xR s. We define by comprehension the sets of declarations and references
belonging to a scope s, as D(s) = {xD | Sc(xD) = s} and R(s) = {xR | Sc(xR) = s}.
In most contexts, constraints and derived notations are implicitly parameterized by
the scope graph under consideration; when they need to be explicitly parameterized
by a scope graph G, we use a subscript notation (e.g. DG(s)).

22 2 A Constraint Language for Static Semantic Analysis

Resolution Constraints The basic semantic intuition behind scope graphs is that a
reference resolves to a declaration iff there is a path from the reference node to the
declaration node. In this case we say that the declaration is visible from the reference.
Resolution constraints (CRes in the grammar) represent requirements on successful
name resolution:

• A resolution constraint R 7→ D specifies that a given reference must resolve to a
given declaration. Typically, the declaration is specified as a declaration vari‑
able δ. For example, in Fig. 2.2 the constraints xR

4 7→ δ4 and xR
8 7→ δ8 require

that references xR
4 and xR

8 resolve to (as yet unknown) declarations δ4 and δ8,
respectively.

A solution to a set of resolution constraints is a substitution mapping each declara‑
tion variable to a declaration, such that applying this substitution to the constraints
generates valid resolutions according to the scope graph resolution calculus (which
we formalize in Section 2.3). In Fig. 2.2, since the only paths starting at xR

4 and xR
8

both end at declaration xD
1, the (sole) solution to these constraints is a substitution

mapping both δ4 and δ8 to xD
1. Applying this substitution yields the valid resolutions

xR
4 7−→ xD

1 and xR
8 7−→ xD

1.
In addition to constraints about the resolution of references, CRes also includes

constraints on properties of name collections N, which are multisets of identifiers. For
now we only consider the uniqueness constraint:

• A uniqueness constraint !N specifies that a given name collection N contains no
duplicates.

• A declaration name collection D(s) is obtained by projecting the identifiers from
the set of declarations in scope s.

Thus, for example, in Fig. 2.2 the constraint !D(1) requires that scope 1 should have
no duplicate declarations. These types of constraints are satisfied when the property
they specify holds.

Typing Constraints Typing constraints (CTy) represent requirements for type con‑
sistency of the program:

• A type declaration constraint D : T associates a type with a declaration. This
constraint is used in two flavors: associating a type variable (τ) with a con‑
crete declaration, or associating a type variable with a declaration variable. In
Fig. 2.2, the constraints xD

1 : τ2 and yD
3 : τ9 associate distinct type variables with

declarations xD
1 and yD

3. (For ease of reading, we choose type variable names
corresponding to subexpression label numbers.) The constraint δ4 : τ4 requires

2.2 Constraints for Static Semantics 23

def x1 = 12
def y3 = (if (x4 == 05)6 then 37 else x8)9

Scope graph constraints

x1x4

y3

1
x8

Resolution constraints

xR
4 7→ δ4

xR
8 7→ δ8

!D(1)

Typing constraints

xD
1 : τ2 τ2 ≡ Int
yD

3 : τ9 τ9 ≡ τ7

τ9 ≡ τ8 δ4 : τ4

δ8 : τ8 τ6 ≡ Bool
τ4 ≡ Int τ5 ≡ Int
τ7 ≡ Int

Solution

δ4 = δ8 = xD
1

τ2 = τ4 = τ5 = Int
τ7 = τ8 = τ9 = Int

τ6 = Bool

Figure 2.2: Declarations and references in global scope

the type of the declaration to which xR
4 resolves to be the same as the type τ4 of

the reference considered as an expression.

• A type equality constraint T ≡ T specifies that two types should be equal. In
Fig. 2.2, the constraint τ2 ≡ Int arises from the constant expression 12 , and
the constraint τ4 ≡ Int arises from the fact that the == operator takes integer
operands. The constraint τ6 ≡ Bool arises in two ways, from the fact that ==
returns a Boolean and the fact that if requires one; since constraints should be
thought of as a set, we list each distinct constraint only once.

A solution to a set of typing constraints is a substitution on declaration and type
variables that satisfies all the constraints. For example, the substitution for τ9 can be
deduced either from the constraints τ9 ≡ τ7 and τ7 ≡ Int, or from the constraints
τ9 ≡ τ8, τ2 ≡ Int and the unification of τ8 and τ2 (via δ8 = xD

1).

Note that for a program to be both well‑bound and well‑typed, we need to find a
single substitution on declaration and type variables that allows both resolution and
typing constraints to be satisfied simultaneously. In this simple example, it is clear
that the declaration variables are determined solely by the resolution constraints, but
this will not always be the case in general.

24 2 A Constraint Language for Static Semantic Analysis

2.2.2 Lexical Scope

Only very trivial programs have just a single scope. The left part of Fig. 2.3 shows an
LMR example that illustrates nested lexical scopes. Scope graphs use edges between
scopes to model inclusion of the (visible) declarations in one scope in another. They
can be used to model lexical nesting or direct import of all the names from one scope
into another, according to the label on the edge.

• A direct edge constraint s1
l s2 specifies a direct l‑labeled edge from scope s1

to s2. (Graphically: s1 s2
l

.) The general meaning of such an edge is that
the declarations visible in s2 are also visible in s1. Or, following the direction of
the arrow, that a reference in s1 can be resolved by searching for a declaration
in s2.

In the left part of Fig. 2.3, scope 2 — corresponding to the body of the fun — is
nested within the program global scope 1 , which is expressed by the scope edge
constraint 2 1

P
. This edge is labeled P for “parent;” we will see other possible

labels shortly. A resolution path starting from a reference may traverse a P edge to
find a matching declaration, e.g. reference fR

6 resolves to fD
3. However, in order to

model shadowing of outer declarations by inner ones, paths that traverse fewer (or
no) P edges are preferred, so reference nR

7 resolves to declaration nD
4 rather than to nD

1.
The kinds of typing constraints generated by this example are the same as those

from the previous example. Note that the solution to the typing constraints leaves f’s
result type unspecified (since it is never used).

2.2.3 Imports

In addition to lexical scope, many programming languages provide features for mak‑
ing declarations in scopes selectively available ‘at a distance’. Examples of such con‑
structs are modules with imports in ML and classes with inheritance in Java. To
model such features, scope graphs provide associated scopes and imports.

Associated Scope The essence of module‑like constructs is that they encapsulate a col‑
lection of declarations and make these available through import of the module. That
requires an association between the encapsulated declarations and the declaration of
the module, which is modeled by associated scopes:

• An association constraint xD s specifies s as the associated scope of declaration xD.
Associated scopes can be used to connect the declaration (e.g. a module) of
a collection of names to the scope declaring those names (e.g. the body of a
module). Graphically: x s .

2.2 Constraints for Static Semantics 25

def n1 = true2
def f3 = (

fun (n4:Int5){
f6(n7)

}8
)9

module A1 {
def a2 = 43

}
module B4 {

import A5
def b6 = a7

}

Scope graph constraints

12

n4 n1

f6

n7

f3
P

Resolution Constraints

fR
6 7→ δ6 nR

7 7→ δ7

!D(1) !D(2)

Typing constraints

nD
1 : τ2 τ2 ≡ Bool
fD

3 : τ9 τ9 ≡ Fun[τ5,τ8]

nD
4 : τ5 τ5 ≡ Int

δ6 : τ6 τ6 ≡ Fun[τ7,τ8]

δ7 : τ7

Solution

δ6 = fD
3 δ7 = nD

4
τ2 = Bool τ8 = t0

τ5 = τ7 = Int
τ6 = τ9 = Fun[Int,t0]

where t0 is any fixed arbitrary type

Scope graph constraints

1

23

a2

A1

b6 A5

B4

a7

P P

I

Resolution constraints

aR
7 7→ δ7 !D(1)

!D(2) !D(3)

Typing constraints

aD
2 : τ3 τ3 ≡ Int
bD

6 : τ7 δ7 : τ7

Solution

δ7 = aD
2

τ3 = Int τ7 = Int

Figure 2.3: Lexical scope and module imports.

26 2 A Constraint Language for Static Semantic Analysis

The LMR program in the right part of Fig. 2.3 consists of twomodulesA1 and B4 and an
import of the former into the latter. The declarations in these modules are contained
in 2 and 3 . Each of these scopes is associated with the corresponding declaration
of the name of the module, which is represented in a scope graph diagram with an
open arrow, e.g. A1 2 . These scopes are also child scopes of the program global
scope 1 .

Imports A nominal importmakes the declarations in an associated scope visible in an‑
other, not necessarily lexically related, target scope. A nominal import is represented
by (1) a regular reference to the name of the scope being imported, and (2) an import
edge of that name into the target scope:

• A nominal edge constraint s l xR specifies a nominal l‑labeled edge from scope s
to reference xR. (Graphically: s xl

) Such an edge makes visible in s
all declarations that are visible in the associated scope of the declaration to
which xR resolves, according to the label on the edge.

For example, import A5 is represented by the referenceAR
5 in scope 3 and an import

arrow 3 A5
I

. It is also possible to import the declarations of another scope di‑
rectly, using an (ordinary) nameless edge; this feature is used in the next sub‑section.

Resolving through Imports Name resolution in the presence of associated scopes and
imports proceeds as follows. If a scope S1 contains an import xR

i , which resolves to a
declaration xD

j with associated scope S2, then all declarations in S2 are reachable in S1.
Thus, in the example, reference aR

7 resolves to declaration aD
2 since the import AR

5 re‑
solves to declaration AD

1, and the associated scope 2 of AD
1 contains declaration aD

2.
Note that the resolution calculus is parameterized by the policy used to disambiguate
conflicting resolutions. Here we use a default policy that prefers imported declara‑
tions over declarations in parents; alternatives are discussed in Section 2.3.4.

2.2.4 Type-Dependent Name Resolution

So far, we have seen how to use resolution constraints to express the dependence
of type resolution on name resolution. However, for some language constructs the
resolution of a name to its declaration depends on the type of another expression.
For example, in a field access expression e.f, in order to resolve the field f, one first
needs to find the type of the expression e and then to look for f in the scope associated
with the type. This scheme induces dependencies on type resolution, not only from
name resolution but also from scope graph construction (one does not know in which
scope the reference f lies). We model such type‑dependent name resolution by using
scope graph constraints with scope variables. The examples in Fig. 2.4 illustrate the
approach.

2.2 Constraints for Static Semantics 27

Field Declaration and Initialization Before we can study field access proper, we need
to consider modeling of record types, field declarations, and record initialization. We
identify each record type by the declaration of the record name in its type definition,
e.g. Rec(AD

1). We model the fields of a record type definition as declarations (here
just xD

2) in a scope (here, scope 2) associated with the record type name declara‑
tion AD

1. The resolution constraint !D(2) forbids duplicate field names.
To construct a new record of a declared record type (e.g. AD

1), we create a new
parentless scope (here, scope 3) which imports the field names of the record by
importing (the associated scope of) the record declaration (via a reference to the name
of the type, here AD

5). We then process field initializers by putting references to the
field names (here just xR

6) into this new scope; these references can only resolve to the
field declarations.

In order to check that each field of a record type is initialized, we use the following
additional kinds of name collections and constraints:

• A reference name collection R(s) denotes the multiset of reference identifiers of
scope s.

• A visible name collection V(s) denotes the multiset of declaration identifiers that
are visible from scope s (i.e., would be visible from a reference to the declared
identifier in s).

• A subset constraint N ⊂∼ N specifies that one name collection is included in
another.

• An iso constraint N1 ≈ N2 is syntactic sugar for N1 ⊂∼ N2 ∧N2 ⊂∼ N1 and speci‑
fies that two name collections are isomorphic.

Thus, the constraint V(3) ≈ R(3) requires that the set of visible field declarations
V(3) (the declarations visible in scope 3) is isomorphic to the set of initializersR(3)
(the references in 3).

Field Access Now we consider the field access aR
10.xR

11 at subexpression 12 in Fig. 2.4.
The reference xR

11 is a field access in the record value of aR
10. Thus, xR

11 should be
resolved in a scope containing (just) the declarations for the field names, i.e. the
associated scope of the type of the aR

10, namely 2 . Once again, we create a parentless
scope 4 and add the field being accessed (here xR

8) as a reference in that scope.
However, in this case we do not know at constraint extraction time that 2 is the
correct scope to import, because we do not know the type of aR

10. That is, the name
resolution of xR

11 depends on the type resolution of aR10.
To model this we proceed as follows. We create a new scope variable ς12 that acts

as a placeholder for the scope that we want to import into scope 4 . We add a direct

28 2 A Constraint Language for Static Semantic Analysis

record A1 { x2 : Int3 }
def a4 = (new A5{x6=17})8
def y9 = (a10.x11)12

Scope graph constraints

1

23 x2

A1A5

a4

x6

y9

4

x11

ς12 a10

P

I

I

Resolution constraints

AR
5 7→ δ8 xR

6 7→ δ6

aR
10 7→ δ10 xR

11 7→ δ11

!D(1) !D(2)
V(3) ≈ R(3) δ12 ⇝ ς12

Typing constraints

xD
2 : τ3 τ3 ≡ Int

aD
4 : τ8 τ8 ≡ Rec(δ8)

yD
9 : τ12 δ6 : τ6

δ10 : τ10 δ11 : τ12

τ7 ≡ τ6 τ7 ≡ Int
τ10 ≡ Rec(δ12)

Solution

δ6 = δ11 = xD
2

δ8 = δ12 = AD
1

δ10 = aD
4 ς12 = 2

τ3 = τ6 = τ7 = τ12 = Int
τ8 = τ10 = Rec(AD

1)

Figure 2.4: Field access.

edge constraint 4 ς12
I

, this time labeled with I rather than P, which makes the
resolution process more eager to follow the edge (see Section 2.3.4 for details). We
also have the usual constraints aR

10 7→ δ10 and δ10 : τ10 corresponding to reference aR
10.

And we have the constraint τ10 ≡ Rec(δ12) for some unknown record type declara‑
tion δ12 because of the use of aR

10 in the field position of a field access. To make the
connection between the declaration of the record type and the placeholder scope, we
use an association constraint:

• An association constraint D ⇝ S specifies that a given declaration has a given
associated scope.

Specifically, we use δ12 ⇝ ς12 to say that ς12 must be the associated scope of δ12.
Solving these constraints will lead to a solution for ς12 — in this case the associ‑

ated scope of AD
1, scope 2 — such that the appropriate scope can be imported into

scope 4 . After that, xR
11 can be resolved as usual to the corresponding field declara‑

tion xD
2, yielding its type τ3 ≡ Int.

With As a further variant, we discuss an expression form inspired by thewith state‑
ment in the Pascal language. In the expression with e do e', e should be a record‑
valued expression; the field names of the record are added to the lexical environment

2.3 Syntax and Semantics of Constraints 29

prog = decl∗

decl = module id{ decl∗} | import id | def bind | record id{ fdecl∗}
fdecl = id : ty

ty = Int | Bool | id | ty→ ty
exp = int | true | false | id | exp⊕ exp | if exp then exp else exp | fun (id : ty){ exp}

| exp exp | letrec tbind in exp | new id{ fbind∗} | with exp do exp | exp . id
bind = id = exp | tbind

tbind = id : ty = exp
fbind = id = exp

Figure 2.5: Syntax of LMR.

of e'. That is, a variable reference x in e' will be interpreted as a field of the record
value when the record has indeed a field with name x; otherwise the variable is con‑
sidered as a regular reference in the enclosing lexical context. Static resolution again
requires resolving variables in e' in the associated scope of the record type of e, but
this time also allowing resolution to the enclosing lexical scope. Replacing (a.x)
by (with a do x) in the code of Fig. 2.4 produces identical constraints, with the
addition of a scope graph edge 4 1

P
.

This concludes the informal explanation‑by‑example of the constraint language and
its application to LMR. A constraint extraction algorithm for the full LMR language
is given in Fig. 2.6, but we do not discuss this in detail. Instead, in the next sections
we formalize the syntax and semantics of the constraint language and discuss the
definition of a resolution algorithm based on the semantics.

2.3 Syntax and Semantics of Constraints

In this section we formally define the syntax of the constraint language and its declar‑
ative semantics.

2.3.1 Syntax

Fig. 2.7 defines the full syntax of the constraint language. Constraints are divided
into three categories: Scope graph constraints CG specify a scope graph which de‑
fines the binding structures of the program. Resolution constraints CRes describe
requirements for all program names to be properly resolved and, where appropri‑
ate, to be unique or complete. Typing constraints CTy describe requirements for the
program to be well‑typed. The informal meaning of each constraint form was de‑
scribed by a bulleted definition in Section 2.2. Constraints can be combined using
conjunction (C∧C) and True represents the trivially satisfiable constraint.

A ground constraint is one having no variables. A scope graph is ground if it is
specified by a set of ground scope graph constraints; otherwise it is incomplete.

30 2 A Constraint Language for Static Semantic Analysis

For simplicity, we describe the algorithm as operating over LMR’s concrete syntax. The algorithm is
defined by a family of functions indexed by syntactic category (decl, exp, etc.). Each function takes a
syntactic component and possibly one or more auxiliary parameters, and returns a constraint, possibly
involving one or more fresh variables or new scope identifiers. Functions are defined by a set of rules,
one for each possible syntactic form in the category. For example, [[−]]exp

s,t has twelve rules, and is param‑
eterized by the scope s in which identifier references within the expression are to go and the expected
type t of the expression. We use the notation [[−]]c∗ on sequences of items of syntactic category c to mean
the result of applying [[−]]c to each item and returning the conjunction of the resulting constraints, or
True for the empty sequence.

[[ds]]prog := !D(s) ∧ [[ds]]decl∗
s

[[module xi{ ds}]]decl
s := s xD

i ∧ xD
i s′ ∧ s′ P s ∧ !D(s′) ∧ [[ds]]decl∗

s′

[[import xi]]
decl
s := xR

i s ∧ s I xR
i

[[def b]]decl
s := [[b]]bind

s

[[record xi{ fs}]]decl
s := s xD

i ∧ xD
i s′ ∧ s′ P s ∧ !D(s′) ∧ [[fs]]fdecl∗

s,s′

[[xi = e]]bind
s := s xD

i ∧ xD
i : τ ∧ [[e]]exp

s,τ

[[xi : t = e]]bind
s := s xD

i ∧ xD
i : τ ∧ [[t]]tys,τ ∧ [[e]]exp

s,τ

[[xi:t]]fdecl
sr ,sd := sd xD

i ∧ xD
i : τ ∧ [[t]]tysr ,τ

[[Int]]tys,t := t ≡ Int

[[Bool]]tys,t := t ≡ Bool

[[t1 → t2]]
ty
s,t := t ≡ Fun[τ1,τ2] ∧ [[t1]]

ty
s,τ1 ∧ [[t2]]

ty
s,τ2

[[xi]]
ty
s,t := t ≡ Rec(δ) ∧ xR

i s ∧ xR
i 7→ δ

[[fun (xi:t1){ e}]]exp
s,t :=

t ≡ Fun[τ1,τ2] ∧ s′ P s ∧ !D(s′) ∧ s′ xD
i ∧ xD

i : τ1

∧ [[t1]]
ty
s,τ1 ∧ [[e]]exp

s′ ,τ2

[[letrec bs in e]]exp
s,t := s′ P s ∧ !D(s′) ∧ [[bs]]bind

s′ ∧ [[e]]exp
s′ ,t

[[n]]exp
s,t := t ≡ Int

[[true]]exp
s,t := t ≡ Bool

[[false]]exp
s,t := t ≡ Bool

[[e1 ⊕ e2]]
exp
s,t := t ≡ t3 ∧ τ1 ≡ t1 ∧ τ2 ≡ t2 ∧ [[e1]]

exp
s,τ1 ∧ [[e2]]

exp
s,τ2

(where ⊕ has type t1 × t2 → t3)

[[if e1 then e2 else e3]]
exp
s,t := τ1 ≡ Bool ∧ [[e1]]

exp
s,τ1 ∧ [[e2]]

exp
s,t ∧ [[e3]]

exp
s,t

[[xi]]
exp
s,t := xR

i s ∧ xR
i 7→ δ ∧ δ : t

[[e1 e2]]
exp
s,t := τ ≡Fun[τ1 ,t] ∧ [[e1]]

exp
s,τ ∧ [[e2]]

exp
s,τ1

[[e.xi]]
exp
s,t := [[e]]exp

s,τ ∧ τ ≡ Rec(δ) ∧ δ⇝ ς ∧ s′ I ς ∧ [[xi]]
exp
s′ ,t

[[with e1 do e2]]
exp
s,t := [[e1]]

exp
s,τ ∧ τ ≡ Rec(δ) ∧ δ⇝ ς ∧ s′ P s ∧ s′ I ς ∧ [[e2]]

exp
s′ ,t

[[new xi{ bs}]]exp
s,t :=

xR
i s ∧ xR

i 7→ δ ∧ s′ I xR
i ∧ [[bs]]fbind∗

s,s′ ∧ V(s′) ≈ R(s′)
∧ t ≡ Rec(δ)

[[xi = e]]fbind
s,s′ := xR

i s′ ∧ xR
i 7→ δ ∧ δ : τ ∧ [[e]]exp

s,τ

Figure 2.6: Constraint extraction for LMR. Scope names (s) occurring free in rhs of rules are
new ground scopes. Type variables (τ), scope variables (ς), and declaration variables (δ) oc‑
curring free are fresh variables.

2.3 Syntax and Semantics of Constraints 31

C := CG | CTy | CRes | C∧C | True

CG := R S | S D | S l S | D S | S l R

CRes := R 7→ D | D⇝ S |!N | N ⊂∼ N

CTy := T ≡ T | D : T
D := δ | xD

i
R := xR

i
S := ς | n
T := τ | c(T, ..., T) with c ∈ CT
N := D(S) | R(S) | V(S)

Figure 2.7: Syntax of constraints

The constraint language is parameterized by a family of type constructors c ∈ CT
and a set of labels l ∈ L. We describe the former here and the latter in Section 2.3.4.

Type Constructors Types in T are either type variables τ or type constructor appli‑
cations c(T, ..., T) with c ∈ CT , a set of language‑specific type constructors. Each
constructor c has an associated arity c :: n. For example, Int and Bool are type con‑
structors with arity 0 and Fun is a type constructor with arity 2. Well‑formed con‑
straints respect the arity of the type constructors.

To represent user‑defined types, such as classes in object‑oriented languages or
algebraic data types in functional languages, a type constructor can also include the
scope graph declaration corresponding to the type definition. For example, record
types in LMR are represented by Rec(d) with d a type name declaration in the pro‑
gram; thus, in Fig. 2.4, the record definition A defines the type Rec(AD

1).

2.3.2 Constraint Satisfaction

In our approach, the abstract syntax tree of a program p is reduced by the language‑
specific extraction function to a constraint [[p]] = CG

p ∧ CRes
p ∧CTy

p where commuta‑
tivity and associativity of conjunction let us group the subconstraints into categories.

Our basic approach to defining satisfaction is as follows. First assume that we
have only ground constraints. Then we can interpret scope graph constraints CG di‑
rectly as a ground scope graph. We next define a satisfiability relation |= by cases
on ground resolution constraints CRes and typing constraints CTy relative to a con‑
text (G, ψ), where G is a ground scope graph and ψ is a typing environment map‑
ping declarations inD(G) to unique ground types in T. In particular, resolution con‑
straints are checked against G using the scope graph resolution calculus (described
in Section 2.3.3). Finally, we apply |= with G set to CG.

32 2 A Constraint Language for Static Semantic Analysis

G, ψ |= True
₍C‑TRUE₎

G, ψ |= C1 G, ψ |= C2
G, ψ |= C1 ∧ C2

₍C‑AND₎

ψ(d) = T
G, ψ |= d : T

₍C‑TYPEOF₎
`G p : xR

i 7→ xD
j

G, ψ |= xR
i 7→ xD

j
₍C‑RESOLVE₎

d GS
G, ψ |= d⇝ S

₍C‑SCOPEOF₎
∀x, 1JNKG (x) ≤ 1
G, ψ |=!N

₍C‑UNIQUE₎

JN1KG ⊆ JN2KG
G, ψ |= N1 ⊂∼ N2

₍C‑SUBNAME₎
t1 = t2

G, ψ |= t1 ≡ t2
₍C‑EQ₎

Figure 2.8: Interpretation of resolution and typing constraints

To lift this approach to constraints with variables, we simply apply a multi‑sorted
substitution ϕ, mapping type variables τ to ground types, declaration variables δ

to ground declarations and scope variables ς to ground scopes. Thus, our overall
definition of satisfaction for a program p is:

ϕ(CG
p), ψ |= ϕ(CRes

p) ∧ ϕ(CTy
p) (�)

where ϕ(E) denotes the application of the substitution ϕ to all the variables appearing
in E that are in the domain of ϕ. When the proposition � holds we say that ψ and ϕ

resolve p.

Resolution and Typing Constraints The |= relation is given by the inductive rules in
Fig. 2.8, where = is the syntactic equality on terms and `G xR

i 7−→ xD
j is the resolution

relation for graph G. The interpretation of a name collection JNKG is the multiset
defined as follows: JD(S)KG = π(DG(S)), JR(S)KG = π(RG(S)), and JV(S)KG =

π({xD
i | ∃p, `G p : S 7−→ xD

i }) where π(A) is the multiset produced by projecting
the identifiers from a set A of references or declarations. Given a multiset M, 1M(x)
denotes the multiplicity of x in M.

2.3.3 Resolution Calculus

The resolution calculus defines the resolution of a reference to a declaration in a scope
graph as a most specific, well‑formed path from reference to declaration through a se‑
quence of edges. A path p is a list of steps representing the atomic scope transitions
in the graph. There are three kinds of steps:

• A (direct) edge step E(l, S2) is a direct transition from the current scope to the
scope S2. This step records the label of the scope transition that is used.

2.3 Syntax and Semantics of Constraints 33

Resolution paths
s := D(xD

i) | E(l, S) | N(l, xR
i , S)

p := [] | s | p · p (inductively generated)
[] · p = p · [] = p

(p1 · p2) · p3 = p1 · (p2 · p3)

Well‑formed paths

WF(p)⇔ labels(p) ∈ E
Visibility ordering on paths

label(s1) < label(s2)

s1 · p1 < s2 · p2

p1 < p2
s · p1 < s · p2

Edges in scope graph

S1
l S2

I ` E(l, S2) : S1 −→ S2
(E)

S1
l yR

i yR
i /∈ I I ` p : yR

i 7−→ yD
j yD

j S2

I ` N(l, yR
i , S2) : S1 −→ S2

(N)

Transitive closure

I, S ` [] : A↠ A
(I)

B /∈ S I ` s : A −→ B I, {B} ∪ S ` p : B↠ C
I, S ` s · p : A↠ C

(T)

Reachable declarations
I, {S} ` p : S↠ S′ WF(p) S′ xD

i
I ` p ·D(xD

i) : S↣ xD
i

(R)

Visible declarations
I ` p : S↣ xD

i ∀j, p′(I ` p′ : S↣ xD
j ⇒ ¬(p′ < p))

I ` p : S 7−→ xD
i

(V)

Reference resolution
xR

i S {xR
i } ∪ I ` p : S 7−→ xD

j

I ` p : xR
i 7−→ xD

j
(X)

Figure 2.9: Resolution calculus of Néron et al. (2015) extended for arbitrary edge labels and pa‑
rameterized with well‑formedness predicate WF and visibility ordering <. Here label projects
the label from a step and labels projects the sequence of labels from a path.

34 2 A Constraint Language for Static Semantic Analysis

Lexical scope

L := {P} E := P∗ D < P
Non‑transitive imports

L := {P, I} E := P∗ · I? D < P, D < I, I < P
Transitive imports

L := {P,TI} E := P∗ · TI∗ D < P, D < TI, TI < P
Transitive Includes

L := {P, Inc} E := P∗ · Inc∗ D < P, Inc < P
Transitive includes and imports, and non‑transitive imports

L := {P, Inc,TI, I} E := P∗ · (Inc | TI)∗ · I?

D < P, D < TI, TI < P, Inc < P, D < I, I < P,

Figure 2.10: Example reachability and visibility policies by instantiation of path well‑
formedness and visibility.

• A nominal edge step N(l, yR, S) requires the resolution of reference yR to a dec‑
laration with associated scope S to allow a transition between the current scope
and scope S.

• A complete path always ends with a declaration step D(xD) that stores the dec‑
laration the path is leading to.

A path p is a valid resolution in the graph from reference xR
i to declaration xD

i such that
`G p : xR

i 7−→ xD
i according to the calculus rules in Fig. 2.9. These rules all implicitly

apply to a fixed graph G, which we omit to avoid clutter. The calculus defines the
resolution relation in terms of edges in the scope graph, reachable declarations, and
visible declarations. Here I is the set of seen imports, a technical device needed to
avoid “out of thin air” anomalies in resolution of nominal imports. We often drop I

from a resolution when it is empty. The S component that appears in the transitive
closure rules is the set of seen scopes that is used to prevent cycles in the resolution
path of a given reference.

2.3.4 Parameterization

In order to model the name binding features and resolution policies from different
programming languages, the scope graph and resolution calculus are parameterized
with a set of labelsL, a regular expression E that defines the scope reachability policy,
and an order< on theL (extended with the built‑inD label) that defines the scope vis‑
ibility policy. Fig. 2.9 defines generic predicates derived from these parameters and
used in the calculus. The regular expression E entails a well‑formedness predicate WF

2.4 Resolution Algorithm 35

on paths obtained by projecting the sequence of labels from the path and testing it for
membership in the language of E . The ordering relation on labels entails an ordering
relation on paths using the lexicographic order on the projected label sequences.

Fig. 2.10 presents several example instantiations for these parameters, encoding
different policies. The first policy defines lexical scope in which scopes are transi‑
tively linked through parent edges (P) and local declarations shadow declarations in
parents. The next policy extends lexical scope with non‑transitive imports (I). The
well‑formedness predicate allows an optional import at the end of a lexical scope
chain, ruling out access to the parents of an imported scope. Further, the policy
states that imported declarations shadow declarations in the lexical context. The
transitive imports policy extends this by allowing paths with a chain of imports (TI).
The transitive includes policy is a variation in which local declarations do not shadow
included (Inc) declarations. The final policy combines three import policies, not pro‑
viding rules to disambiguate between paths through different kinds of import edges.
Thus, a reference that can be resolved through an import and an include edge is am‑
biguous and can be flagged as an error.

2.4 Resolution Algorithm

In this section, we describe an algorithm for solving constraints in the sense of Sec‑
tion 2.3.2, i.e. finding ϕ and ψ that satisfy (�). Our algorithm works only for a re‑
stricted class of generated constraints: all constraints in CG

p must be ground, except
that scope variables ς can appear as targets in direct edge constraints (e.g. S l ς).
This restriction is met by the constraints generated by the LMR collection algorithm
in Section 2.2. Broader classes of constraints might be useful for other languages; we
defer exploration of algorithms that could handle these to future work.

2.4.1 Variables in Scope Graph Constraints

The basic approach of the algorithm is to interpret the scope graph constraints as a
scope graph G and then use it to resolve resolution and typing constraints using a
conventional unification‑based algorithm. However, since scope graph constraints
can contain variables, we cannot fully define the scope graph before starting con‑
straint resolution, because we do not fully know ϕ. Thus, our algorithm builds ϕ

(and Ψ) incrementally. The key idea is that we can solve some resolution and typ‑
ing constraints even when ϕ is not yet fully defined, in such a way that the solution
remains valid as it becomes more defined.

36 2 A Constraint Language for Static Semantic Analysis

R[I](xR) := let (r, s) = EnvE [{xR} ∪ I, ∅](Sc(xR))} in{
U if r = P and {xD|xD ∈ s} = ∅
{xD|xD ∈ s}

Envre[I, S](S) :=

{
(T, ∅) if S ∈ S or re = ∅
EnvL∪{D}re [I, S](S)

EnvL
re[I, S](S) :=

⋃
l∈Max(L)

(
Env{l

′∈L|l′<l}
re [I, S](S)◁ Envl

re[I, S](S)
)

EnvDre[I, S](S) :=

{
(T, ∅) if [] /∈ re
(T, D(S))

Envl
re[I, S](S) :=


(P, ∅) if S

▶
l contains a variable or ISl [I](S) = U⋃

S′∈(ISl [I](S)∪S▶l)
Env(l−1re)[I, {S} ∪ S](S′)

ISl [I](S) :=

{
U if ∃yR ∈ (S

▷
l \I) s.t. R[I](yR) = U

{S′ | yR∈ (S
▷
l \I) ∧ yD∈ R[I](yR) ∧ yD S′}

Figure 2.11: Name Resolution Algorithm

2.4.2 Name Resolution Algorithm

In order to solve resolution constraints (e.g. xR 7→ δ) or to compute the set of visible
elements from a scope (V(S)) we need an algorithm that computes the name reso‑
lution relation (xR

i 7−→ xD
j) specified by the calculus presented in Section 2.3.3. We

introduced such an algorithm in our prior work (Néron et al., 2015), but it was spe‑
cific to a particular set of labels, visibility order, and well‑formedness predicate. In
this section, we present a generic version of the algorithm that is parameterized by L,
E and < as described in Section 2.3.4.

Incomplete Scope Graphs A further new requirement on the algorithm is that it can
operate on an incomplete scope graph, specified by a set of constraints that may still
contains variables as the targets of direct edges. The non‑strictly positive premise
of the (V) rule of the resolution calculus makes the derivation of a resolution relation
from a graph non‑monotonic with respect to additions to the graph. For example,
suppose that in some graph G a reference xR in a scope S resolves to declaration xD

i in
the parent scope S′. In a bigger graph G ′ that also has a declaration xD

i′ in S itself, xR

will resolve to xD
i′ , and the old resolution to xD

i will be shadowed. Thus we cannot
simply restrict resolution to the complete part of the graph, and expect the results to
remain valid as the graph becomes more completely known. Instead, we modify the
original algorithm to signal when a result is preliminary.

2.4 Resolution Algorithm 37

The Algorithm Fig. 2.11 defines a resolution algorithm that works on such incom‑
plete scope graphs.The function for resolving a single reference, R[I](xR), returns
either a set of declarations or U (unknown) if the reference cannot be resolved in the
current graph. Similarly, the environment functions Env _

re [I, S](S) return a pair con‑
sisting of:

• a result flag, T (total) if all declarations visible from S can be computed or P

(partial) if there are still possible additional resolutions (some scope variables
are accessible)

• a set of declarations corresponding to resolutions from scope S that are already
certain in this incomplete graph.

When a scope graph contains no variables (i.e. when no partial or unknown flags are
raised) the intended behavior of the different functions is the following:

• R[I](xR) returns the set of declarations to which the reference resolves.

• Envre[I, S](S) returns the set of declarations that are reachable from scope S
with a minimal path satisfying the regular expression re.

• EnvL
re[I, S](S) returns the set of declarations visible from S through labels in

set L after application of the shadowing policy. Using the label order, the dec‑
larations accessible through smaller labels shadow the declarations accessible
through larger ones.

• EnvDre[I, S](S) returns the set of declarations accessible from S with aD step, i.e.
the set of declarations in S.

• Envl
re[I, S](S) returns the set of declarations accessible from S with an l‑labeled

step.

• ISl [I](S) returns the set of scopes that are accessible through a nominal edge by
resolving the reference and returning its associated scope.

The algorithm uses the following auxiliary notation and definitions: ∅ denotes the
empty regular expression and given a path p and a regular expression re, p ∈ re
denotes that labels(p) is in the language of re. The shadowing operator ◁ on sets of
declarations is defined by:

D1 ◁D2
∆
=
{

xD
i | xD

i ∈ D1 ∨ (xD
i ∈ D2 ∧ ∄j, xD

j ∈ D1

}
.

The shadowing operators on pairs with result flag are defined by:

(f1, D1)◁ (f2, D2)
∆
=

{
(f2, D1 ◁D2) if f1 = T

(P, D1) otherwise

38 2 A Constraint Language for Static Semantic Analysis

The union ∪ operator over pairs with result flag is defined as:

⋃
i∈I

(fi, Di)
∆
=

{
(T, D) if ∀i ∈ I, (fi = T)

(P, D) otherwise

where D =
{

xD ∈ ∪i∈I Di | (∀j ∈ I, f j = T∨ ∃xD
k ∈ Dj)

}
.

Given a regular expression over labels re and a label l, l−1re denotes the Brzozowski
derivative (Brzozowski, 1964) of re by l. Given a partially ordered set L, Max(L)
denotes the set of maximal elements of L, i.e. {l ∈ L | ∄l′ ∈ L, l < l′}. Given a
scope S and a label l, we define:

S
▷
l ≜ {xR | S l xR} S

▶
l ≜ {S′ | S l S′}

2.4.3 Correctness

We want to prove the correctness of this algorithm with respect to the calculus in‑
troduced in Section 2.3.3. Details of the proofs can be found in the appendix of the
extended version (van Antwerpen et al., 2015).

Termination First notice that the algorithm terminates using the lexicographic order‑
ing (#(R(G)\I), #(S(G)\S),O), where #(A) denotes the cardinality of set A and O
is the following well founded order among the different functions:

Envre > EnvL
re > Envl

re > EnvD
re > IS > R

This termination order is used as the induction principle in most of the proofs.

Correctness on ground scope graphs We want to prove that when this algorithm oper‑
ates on a ground scope graph, it is sound and complete with respect to the calculus
presented in Fig. 2.9. First, it is trivial to prove that on a ground scope graph, the
return flag can never be P or U, therefore in this section we forget about the flag and
assume that the Env functions return a set of declarations.

To prove the correctness of the algorithm, we consider the set of paths that corre‑
sponds to the sets of declarations returned by the different functions. Given two sets
of scopes I and S and a scope S, we define P [I, S](S) as:

{p ·D(d) | ∃S′, I, S ∪ {S} ` p : S↠ S′ ∧ Sc(d) = S′}

and given a path p such that p = p′ ·D(d), ∆(p) denotes the declaration d. For a set
of paths S, ∆(S) denotes its corresponding set of declarations {∆(p) | p ∈ S} and

◁S ≜ { p ·D(xD
i) ∈ S | ∀ (p′ ·D(xD

j)) ∈ S, ¬ p′ < p}

Given these definitions, we can state the correctness of the algorithm:

2.4 Resolution Algorithm 39

Lemma 1 (Resolution algorithm correctness). On a ground scope graph, we have the
following equivalences

R[I](xR) =∆({p | ∃d, I ` p : xR 7−→ d})

Envre[I, S](S) =

{
∅ if S ∈ S

∆(◁{p ·D(d) ∈ P [I, S](S) | p ∈ re}) otherwise

EnvL
re[I, S](S) =∆(◁{p | ∃l ∈ L, p ∈ Pl

re[I, S](S)})

EnvDre[I, S](S) =∆({D(d) | [] ∈ re∧ Sc(d) = S})

Envl
re[I, S](S) =∆


s · p

∣∣∣∣∣∣∣
label(s) = l ∧
I ` s : S −→ S′ ∧
p ∈ Pl−1re[I, S ∪ {S}](S′)




ISl [I](S) ={S′ | ∃yR, I ` N(l, yR, S′) : S −→ S′}

Proof. The proof is by induction on the termination order of the algorithm. Key ob‑
servations are that all the considered sets of paths are finite since all the paths are
acyclic and if there is a minimal path s · p from scope S with I ` s : S −→ S′ then its
tail p is also minimal from S′, due to the lexicographic ordering.

Correctness on incomplete scope graphs We now want to state the general correctness
of the algorithm that can operate on incomplete scope graphs. We first extend this
definition of resolution as follows. Given an incomplete scope graph G, a reference xR

is said to resolve to a declaration xD
i if and only if this resolution is valid in all ground

instances of G:
`G xR 7−→ xD

i
∆
= ∀ ϕ, `ϕ(G) xR 7−→ xD

i (♦)

where we write `G for the resolution relation for graph G and ϕ(G) is the ground
scope graph corresponding to the application of substitution ϕ to variables in G. Sim‑
ilarly a declaration xD is visible from scope S in an incomplete scope graph G if and
only if it is visible in all the ground instances.

In order to be able to resolve uniqueness constraints for a program we also want
to ensure that an incomplete graph provides all the possible resolutions of a given
reference. In particular, if a resolution is unique in an incomplete graph, we want to
be sure it is unique in all its ground instances. An incomplete graph G is stable for a
reference or a scope o, denoted G ↓ o, if all the resolutions in all its ground instances
are the same:

G ↓ o ∆
= ∀ϕ, ϕ′ `ϕ(G) o 7−→ xD

i ⇒`ϕ′(G) o 7−→ xD
i

Soundness Given this definition, we can prove that the algorithm on incomplete
graphs is correct with respect with the calculus:

40 2 A Constraint Language for Static Semantic Analysis

Lemma 2. For any incomplete graph G:

xD
i ∈ RG(xR) =⇒ `G xR 7−→ xD

i ∧ G ↓ xR

where RG(xR) denotes the top‑level resolution function R[∅](xR) for the graph G.

Lemma 1 states that this property holds when the graph G is ground. We next
prove that if the resolution on an incomplete graph G terminates with a total flag T

then for any graph G ′ that is an instance of G, the result is the same.

Envre[I, S](xR)G = (T, D) =⇒ Envre[I, S](xR)G ′ = (T, D) (i)

Proof. We prove this result along with similar result for all the other functions by
induction on the termination order of the algorithm. The fact that the result is total
implies that the results of all the recursive calls are also total and this allows us to
apply the desired induction hypothesis (when a P or U flag is raised it is always
propagated).

Now we show that the resolution is also correct in the partial case. Let G be an in‑
complete scope graph and G ′ one of its instances. If a resolution on G contains a set
of declarations for a given name then the resolution on G ′ contains the same declara‑
tions for this name:

Envre[I, S](S)G = (_, D) =⇒ Envre[I, S](S)G ′ =
(
_, D′

)
=⇒

∀x, {xD ∈ D} 6= ∅⇒ {xD ∈ D} = {xD ∈ D′} (ii)

Proof. We prove this result along with similar result for all the other functions by
induction on the termination order of the algorithm, using (i).

Finally, we can prove Lemma 2:

Proof. Let Sx = RG(xR) and pick xD
i ∈ Sx. To prove that xR resolves to xD

i in G, let G ′ be
an arbitrary ground instance of G. Using (ii) we have xD

i ∈ RG ′(xR) and by Lemma 1
we have `G ′ xR 7−→ xD

i . By ♦, we get that `G xR 7−→ xD
i .

To prove stability, let G1 and G2 be ground instances of G. Then using (ii), we
have RG1(xR) = RG2(xR) = Sx, so by definition we have G ↓ xR.

2.4.4 Name Collection Computation

This resolution algorithm on partial graphs is used to compute not only resolution of
references but also the set of names visible from a given scope. Given an incomplete
graph G and a scope S, we compute name collections as:

NG(D(S)) = π(DG(S)) NG(R(S)) = π(RG(S))
NG(V(S)) = π({xD

i | ∃E, EnvE [∅, ∅](S)G = (T, E) ∧ xD
i ∈ E})

2.4 Resolution Algorithm 41

₍S‑RESOLVE₎
(xR 7→ δ ∧ C,G, ψ) −→ [δ 7→ xD](C,G, ψ) where xD ∈ RG (xR)

₍S‑ASSOC₎
(xD ⇝ ς ∧ C,G, ψ) −→ [ς 7→ S](C,G, ψ) where xD S

₍S‑EQUAL₎
(T1 ≡ T2 ∧ C,G, ψ) −→ σ(C,G, ψ) where U (T1, T2) = σ

₍S‑UNIQUE₎
(!N ∧ C,G, ψ) −→ (C,G, ψ) where ∀x∈NG (N), 1NG (N)(x)=1

₍S‑SUBNAME₎
(N1 ⊂∼ N2 ∧ C,G, ψ) −→ (C,G, ψ) where NG (N1) ⊆ NG (N2)

₍S‑TYPEOF₎

(xD : T ∧ C,G, ψ) −→
{
(C,G, {xD 7→ T} ∪ ψ)
(ψ(xD) ≡ T ∧ C,G, ψ)

if xD 6∈ dom(ψ)
otherwise

₍S‑TRUE₎
(True∧ C,G, ψ) −→ (C,G, ψ)

Figure 2.12: Constraint solving algorithm

Lemma 3 (Name computation soundness). If the computation of a name collection E
terminates on an incomplete graph G, its results is the semantics of the name collec‑
tion for any graph G ′ that is an instance of G:

NG(E) = M =⇒ JEKG ′ = M.

2.4.5 Constraint Solving Algorithm

With this name resolution algorithm in hand, Fig. 2.12 gives an algorithm to solve
the constraint system from Section 2.3. The algorithm is a non‑deterministic rewrite
system working over tuples (C,G, ψ) of a constraint, a scope graph, and a typing
environment. It is non‑deterministic in the sense that rules may be applied to any
atomic constraint in any order considering that ∧ is associative and commutative.

Name resolution introduces ambiguity, since a reference xR may resolve to mul‑
tiple definitions. If this happens the solver branches, picking a different resolution
for xR in every branch. The returned solution is a set of all the (C,G, ψ) tuples the
solver was able to construct. The initial state of the solver is the collected constraint,
the (incomplete) scope graph built from the scope graph constraints and an empty
typing environment. The algorithm will eliminate clauses from C while instantiat‑
ing G and filling ψ. The algorithm terminates when the constraint is empty or no

42 2 A Constraint Language for Static Semantic Analysis

more clauses can be solved. Each rule solves one constraint, possibly updating com‑
ponents of the tuple or applying a substitution to it.

• Rule S‑RESOLVE solves resolution constraints xR 7→ δ using the resolution algo‑
rithm from Fig. 2.11. If a resolution is found, it is substituted for the variable δ.
If the scope graph is incomplete, the algorithm might return U, in which case
the constraint is left to be solved later.

• Rule S‑ASSOC solves scope association constraints xD ⇝ ς by looking up the
scope S associated with ground declaration xD in the scope graph. By substi‑
tuting S for ς, the scope graph becomes more complete, possibly allowing more
references to be resolved.

• Rule S‑EQUAL solves equality constraints T1 ≡ T2. It uses first order unifica‑
tion U (T1, T2), as described by Baader and Nipkow (1998). The resulting sub‑
stitution is applied to the tuple.

• Rule S‑UNIQUE solves !N constraints by checking that the identifier collection N
can be computed and all identifiers in it are distinct. (1A(x) is the multiplicity
of x in A).

• Rule S‑SUBNAME solves N1 ⊂∼ N2 constraints by checking that the identifier
collections N1 and N2 can be computed and that every identifier in N1 is also
in N2.

• Rule S‑TYPEOF solves type assignment constraints xD : T. The rule considers
two cases. When no type assignment is declared for xD in ψ (i.e. the first time
that it is encountered) the assignment is added to the typing environment ψ.
When a type assignment isdeclared (i.e. for subsequent encounters), the type T
from the constraint is unified with the type ψ(xD) from the typing environment.

The constraint resolution algorithm is sound with respect to the constraints seman‑
tics.

Lemma 4 (Constraint Solver correctness). If the algorithm produces a solution to a
resolution problem then the solution is valid: for all C,G,G ′, ψ′:

(C,G, ∅) −→∗ (True,G ′, ψ′) =⇒ ∃ϕ, ϕ(G) = G ′ ∧ ∀σ, σG ′, σψ′ |= σ(ϕ(C))

Proof. To prove this result we first state some results on the auxiliary unification.

Unification: If U (t1, t2) = σ then σt1 = σt2 ∧ σσ = σ. See Baader and Nipkow (1998)
for a survey on unification problem and unification algorithms for first order terms.

2.5 Related Work and Discussion 43

Resolution Soundness: Now we can prove the Lemma 4 of the constraint resolution
algorithm. We first prove that for each reduction step, if the output is satisfiable, the
input is also satisfiable in the same definition‑to‑type environment:

∀(C1,G1, ψ1), (C2,G2, ψ2), (C1,G1, ψ1) −→ (C2,G2, ψ2) =⇒
∃σ′, σ′(G1) = G2 ∧

(
∀σ, (σ(G2), σψ2) |= σ(C2)⇒ (σG2, σψ2) |= σσ′(C1)

)
(2.1)

The proof of this property is by case analysis on the reduction step. From it, we can
prove Lemma 4 by a simple induction on the number of reduction steps.

2.5 Related Work and Discussion

In this section, we discuss the relation of this paper with previous and other related
work, and discuss limitations and ideas for future work.

PreviousWork The work in this paper is based closely on our previous theory of name
resolution (Néron et al., 2015), which we extend and generalize here as follows: (i) a
scope graph is now defined directly by a set of constraints; (ii) we generalize the
parent relation to an arbitrary labeled direct edge between pairs of scopes, and the
named import relation to an arbitrary labeled nominal edge between scopes and ref‑
erences; (iii) we extend the resolution algorithm to handle arbitrary well‑formedness
conditions expressed as regular expressions over arbitrary sets of path labels and
arbitrary visibility orderings on labels; (iv) we support partial resolution over incom‑
plete scope graphs; (v) we add the seen‑scopes component, previously an artifact of
the resolution algorithm, to the resolution calculus to prevent cyclic resolution paths.

The development of the scope graph framework fits in an ongoing line of research
to provide high‑level domain‑specific support for name binding and type analysis in
the Spoofax Language Workbench (Kats and Visser, 2010) using the NaBL and TS
meta‑DSLs (Konat et al., 2012; Visser et al., 2014; Wachsmuth et al., 2013). NaBL is a
DSL for defining the name binding rules of programming languages by identifying
the references, definitions, scopes, and imports in an abstract syntax tree without re‑
course to environments or symbol tables (Konat et al., 2012). TS is a complementary
DSL for defining type analysis rules. (The design of TS is not formally published,
but it is sketched in (Visser et al., 2014).) Rules in TS are similar to traditional typing
judgments, relating an expression to a type. However, type rules do not have to prop‑
agate context information, since that is taken care of by the separate binding rules.
TS rules refer to the results of name analysis produced by NaBL (e.g. definition
of x has type t), and NaBL rules refer to the results of type analysis to achieve
type‑dependent name resolution. NaBL and TS are implemented by generation of
(1) a language‑specific AST traversal that generates ‘tasks’, and (2) a language‑inde‑
pendent task engine that evaluates tasks in order to (incrementally) compute a name

44 2 A Constraint Language for Static Semantic Analysis

and type assignment (Wachsmuth et al., 2013). The resulting name and type analysis
engines produce Eclipse IDE support for editor services such as name and type error
checking, reference resolution, and code completion.

While NaBL and TS are used in practice to build language definitions with Spoo‑
fax, the lack of a solid theoretical foundation was a problem for further development.
The aim to verify properties of language definitions (Visser et al., 2014) requires a
semantics that can be explained to a proof assistant such as Coq. In particular, the
semantics of notions such as imports and ‘subsequent scope’ were hard to capture.
NaBL has some limitations in its coverage of name binding patterns. For example, it
cannot express variations on let bindings such as sequential and parallel let. While
the task engine is constraint‑like, its type resolution is not based on unification, which
entails that TS cannot be used to express languages requiring type inference. The con‑
straint language developed in this paper provides a solid formal basis for developing
a new generation of name binding and type specification languages.

Prototype Implementation We have developed a prototype implementation of the
constraint solver and applied it in the IDE generated with the Spoofax Language
Workbench (Kats and Visser, 2010) for the LMR model language used in this paper.
However, the prototype does not yet implement the parameterized name resolution
algorithm developed in this paper, but uses the fixed policy from Néron et al. (2015).
In the prototype implementation, sets of constraints for erroneous programs lead to
partial solutions with unsolvable residual constraints that can be translated into er‑
ror messages in an IDE. However, we have not formalized this; we have only proven
the soundness of the solver for successful reductions. Furthermore, the implementa‑
tion is not optimized, nor does it support incremental evaluation of constraints in the
sense of the NaBL/TS task engine (Wachsmuth et al., 2013).

Constraints The use of constraints to abstract out type inference problems from the
abstract syntax tree is a common approach in implementations and extensions of the
Hindley/Milner type system (Milner, 1978) and has been applied to a huge variety
of typing features. However, these approaches do not address name resolution us‑
ing constraints, but rather perform name resolution during constraint collection. For
example, in the work of Palsberg and Schwartzbach (1991, 1994) on object‑oriented
type systems, constraints are associated with identifiers, which requires these to be
resolved before constraint collection. We believe that our use of constraints to define
static name resolution is novel. Instead of performing name resolution during con‑
straint collection, we provide a reusable set of constraints to express name resolution
problems, including name resolution for ‘remote’ names through imports and the in‑
teraction between name and type resolution in type‑dependent name resolution.

A variation on traditional type system definitions using inference rules is the co‑
contextual approach of Erdweg, Bracevac, et al. (2015). Instead of propagating an

2.5 Related Work and Discussion 45

environment to the sub‑terms, environments are ‘synthesized’ along with type con‑
straints, and the constraints and environments for sub‑terms are merged. This allows
for compositional and incremental processing of name and type constraints. Name
resolution is expressed using operations on environments. It would be interesting to
consider a bottom‑up collection of constraints in our approach. The extraction algo‑
rithm of Fig. 2.6 can be reformulated as a bottom‑up collector, using scope variables
as placeholders for as yet unknown scopes. However, a key difference with our ap‑
proach is the support for imports (and nominal instead of structural record types,
which requires inspecting the AST associated with a type declaration), which pre‑
cludes a representation of context information using a flat environment. A general
challenge lies in the convergence of these approaches: how to realize incremental
name and type analysis in the face of imports?

Attribute Grammars Another common approach to the implementation of static se‑
mantic analysis is by means of attribute grammars (Knuth, 1968). In traditional at‑
tribute grammars all ‘semantic’ operations are carried out in the value domain. Thus,
name resolution is expressed by propagating a type environment or symbol table
through attribute values. Kastens and Waite (1991) provide a reusable ADT for the
definition of name analysis that bears some resemblance to our scope graph frame‑
work, although the treatment of modules and imports is only discussed at the im‑
plementation level. Such attribute grammars would be a suitable mechanism for
the definition of constraint collection. The extraction algorithm in Fig. 2.6 could eas‑
ily be rephrased as an attribute grammar with scopes and type variables as inher‑
ited attributes and constraints as synthesized attribute. In reference attribute gram‑
mars (Hedin, 2000), attributes can get references to tree nodes as values. Thus, at‑
tributes can be used to link references (in the scope graph sense) to their declarations.
For example, Ekman and Hedin (2006) provide a generic framework for name reso‑
lution based on generic reference attributes. Though this framework is part of the
JastAdd Java compiler, it can be reused for other languages as well. The framework
needs to be instantiated with language‑specific lookup functions to resolve names.
These can be specified modularly per language construct, making it possible to echo
the structure of the Java language specification of name binding closely. However,
these lookup functions programatically encode name binding idioms such as lexi‑
cal scoping, shadowing, and hiding. Reference attributes can also be used in the
specification of type analysis. Similar to our approach, name binding and typing
rules can be specified mostly separately. In a generic framework, Ekman and Hedin
(2007a) use reference attributes to link language constructs to their types and to rep‑
resent type relations such as subtyping. Similar to name resolution, instantiations
of the framework need to be encoded programatically. Modularity and extensibility
require particular encoding patterns such as double dispatch.

46 2 A Constraint Language for Static Semantic Analysis

The distinctive feature of our approach is that we treat name resolution using
a largely separate mechanism, the scope graph, rather than integrating it into type
resolution. Since some language constructs require type‑dependent name resolution,
there is inevitably some interaction between naming and typing, but we are still able
to reuse most of our existing name resolution theory, which gives us the ability to
handle a very rich variety of name binding schemes.

FutureWork There are many directions for future work. One important goal is to ex‑
tend our theory to handle languages with more sophisticated typing features, includ‑
ing subtyping, type‑parameterized classes and functions, and modules with type
signatures. To support popular OO language idioms, we also need to add support
for multiple independent name spaces (and disambiguation across them) and type‑
based overloading resolution. As we make such extensions, we would also like to ad‑
dress the completeness of the constraint resolution algorithm (on suitably restricted
sets of constraints). In particular, it would be interesting to integrate approaches to
type error recovery (Heeren et al., 2003; D. Zhang and Myers, 2014; D. Zhang et al.,
2015) in order to generate good quality type error messages automatically.

On a pragmatic front, more analysis and implementation experiments are needed
to determine if our approach will scale to real‑world tools. In particular, we need to
assess the theoretical and actual efficiency of our constraint solving algorithm. In
addition, many applications for semantic analysis (e.g. in IDEs) require efficient in‑
cremental computation of name and type resolution.

On the usability front, we are interested in evaluating the expressivity and under‑
standability of our constraint language and of higher‑level name and type specifica‑
tion languages that we express in terms of it. Is there a payoff to the use of high‑level,
but perhaps more abstract concepts, in contrast to a direct implementation?

Finally, we are interested in extending the application of our building block ap‑
proach to other tasks where constraint‑based methods have proved useful, such as
pointer analysis.

Acknowledgments We thank the anonymous reviewers for their feedback on previ‑
ous versions of this paper. This research was partially funded by the NWO VICI
Language Designer’s Workbench project (639.023.206). Andrew Tolmach was partly
supported by a Digiteo Chair at Laboratoire de Recherche en Informatique, Univer‑
sité Paris‑Sud.

3Scopes as Types

Abstract Scope graphs are a promising generic framework to model the binding structures
of programming languages, bridging formalization and implementation, supporting the def‑
inition of type checkers and the automation of type safety proofs. However, previous work
on scope graphs has been limited to simple, nominal type systems. In this paper, we show
that viewing scopes as types enables us to model the internal structure of types in a range of
non‑simple type systems (including structural records and generic classes) using the generic
representation of scopes. Further, we show that relations between such types can be expressed
in terms of generalized scope graph queries. We extend scope graphs with scoped relations
and queries. We introduce Statix, a new domain‑specific meta‑language for the specification
of static semantics, based on scope graphs and constraints. We evaluate the scopes as types ap‑
proach and the Statix design in case studies of the simply‑typed lambda calculus with records,
System F, and Featherweight Generic Java.

3.1 Introduction

The goal of our work is to support high‑level specification of type systems that can
be used for multiple purposes, including reasoning (about type safety among other
things) and the implementation of type checkers (Visser et al., 2014). Traditional ap‑
proaches to type system specification do not reflect the commonality underlying the
name binding mechanisms for different languages. Furthermore, operationalizing
name binding in a type checker requires carefully staging the traversals of the ab‑
stract syntax tree in order to collect information before it is needed. In this paper, we
introduce an approach to the declarative specification of type systems that is close in
abstraction to traditional type system specifications, but can be directly interpreted
as type checking rules. The approach is based on scope graphs for name resolution,
and constraints to separate traversal order from solving order.

Modeling Names in Programming Languages Formal definitions of type systems and
their implementation as type checkers feature a variety of techniques to model and
implement name binding and name resolution for different languages. For example,
if we consider Pierce’s (2002) book we encounter the following representations for

Published as Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and Eelco Visser (2018).
“Scopes as types.” In: Proceedings of the ACM on Programming Languages OOPSLA. DOI: 10.1145/327648
4. Copyright © 2018 Owner/Author. Licensed under a Creative Commons Attribution International 4.0
License.

https://doi.org/10.1145/3276484
https://doi.org/10.1145/3276484

48 3 Scopes as Types

the treatment of names: sequences of name‑type associations to represent type envi‑
ronments for the simply‑typed lambda calculus; tuples of label‑type associations to
represent record and variant types; class tables with functions for field and method
lookup to represent the nominal class types of Featherweight Java; types with quan‑
tifiers to represent parameterized types in System F; and pairs of type variables and
types to represent existential types. These are all fine mathematical representations,
but they have been optimized for the particular language they model. These opti‑
mizations obscure the understanding of the common underlying concepts of name
binding. Furthermore, the variation in representations is not a good basis for the con‑
struction of reusable tools for language design. Would it be possible to standardize
the treatment of names in programming languages?

ModelingNameResolutionwith ScopeGraphs Scope graphs were introduced by Néron
et al. (2015) as a general model for name resolution in programming languages that
is suitable for formalization as well as implementation. A scope graph captures the
binding structure of a program. A scope is a region in a program that behaves uni‑
formly with respect to name resolution. Declarations of names and references are
associated with scopes. Visibility is modeled by edges between scopes. A generic,
language‑independent resolution algorithm interprets a scope graph to resolve refer‑
ences to declarations by finding the most specific well‑formed path in a scope graph.
To express the binding rules of a programming language, one defines a mapping
from abstract syntax trees to scope graphs. Scope graphs cover a wide range of bind‑
ing structures, including lexical bindings1 such as let bindings, function parameters,
and local variables in blocks; and non‑lexical bindings such as (potentially cyclic) mod‑
ule imports and class inheritance. The framework enables language‑independent
definitions of alpha equivalence and safe variable renaming.

The scope graph framework has already been used succesfully in several appli‑
cations. van Antwerpen et al. (2016) use scope graphs to model name binding in a
constraint language for the definition of type checkers. Bach Poulsen et al. (2016) de‑
fine a framework in which scopes describe frames, providing a language‑independent
model for run‑time memory in dynamic semantics. Bach Poulsen et al. (2018) show
that this model can be used to realize type safety by construction in intrinsically‑typed
definitional interpreters for imperative languages.

Thus, scope graphs are the basis for a promising approach to the definition of
the static semantics of programming languages that serves the implementation of
tools such as type checkers, as well as the verification of language properties such
as type safety. However, the adoption of scope graphs is inhibited by its limitation
to simple type systems. As a model that ties information to names, scope graphs

1Lexical bindings are those in which the name binding construct dominates the abstract tree that
corresponds to the scope of the construct. Non‑lexical bindings define names that are reachable outside
the dominated tree.

3.1 Introduction 49

appear to be limited in expressiveness. The works cited above cover languages with
simple, nominal type systems in which types are identified by name, and their future
work calls for extension to more sophisticated type systems. In particular, it is not
clear how scope graphs can be used to describe structural types, in which types are
not identified by name, and generic types, in which types are parameterized by types.

Scopes as Types In this paper, we demonstrate how scope graphs can be used to
model type systems with more sophisticated forms of type representation and com‑
patibility checking, such as structural record types and parameterized types in both
nominal and structural type systems, by using scopes as types. Scope graph scopes
can model a variety of structured types such as records and classes. Visibility edges
between scopes can be used to model subtyping. The instantiation of a parameter‑
ized type can be modeled by means of a new scope that refines the binding of a
parameter. To realize scopes‑as‑types we generalize scope graphs with scoped rela‑
tions, formalizing scoped information including typed declarations, and we simplify
scope graphs by using the scopes‑as‑types approach to model imports, which were
previously built into the framework.

We demonstrate how the approach can be applied in the definition of type sys‑
tems for the simply‑typed lambda calculus with records (featuring structural sub‑
typing; Pierce, 2002), System F (featuring parametric types; Girard, 1972; Reynolds,
1974), and Featherweight Generic Java (featuring generic class types; Igarashi et al.,
2001).

Staging Name Resolution and Type Checking Scope graphs provide a uniform model
for the representation and resolution of binding information in programs, but they do
not, by themselves, address another issue with realizing declarative definition of type
checkers: the staging of name resolution and type checking. It is common practice
to use constraints in type checkers in order to separate the collection of type compati‑
bility requirements, and checking that these are satisfied. However, name resolution
is typically performed during the traversal of the abstract syntax tree that generates
constraints. This requires a careful staging of the traversal in order to collect infor‑
mation (names and their types) before it will be needed. For example, checking a
recursive let expression requires processing the declared variables before checking
the initializing expressions. Similarly, checking modules or classes requires collect‑
ing signature information before checking their contents. This approach is further
complicated when considering type‑dependent name resolution in which the resolution
of names depends on the resolution of types.

In this paper, we introduce Statix, a constraint‑based declarative language for the
specification of type systems that combines type constraints with name resolution con‑
straints based on scope graphs. That is, Statix rules define the static semantics of

50 3 Scopes as Types

language constructs in terms of constraints over type terms and constraints that de‑
fine and query a scope graph. Definition of type checkers using this approach is more
declarative since the order of evaluation of constraints is not tied to the order of the
traversal of the abstract syntax tree. In particular, this relieves the language designer
from ensuring that information is collected before it is used. Statix generalizes the
constraint language of van Antwerpen et al. (2016) by introducing user‑defined con‑
straints, required to define type compatibility predicates, and by generalizing name
resolution to scope graph queries to retrieve (visible) scoped information.

Contributions The paper makes the following technical contributions:
• We show that viewing scopes as types enables modeling the internal structure of

types in a range of interesting type systems, including structural records and
generic classes, using the generic representation of scopes.

• We extend the scope graph framework of Néron et al. (2015) and van Antwer‑
pen et al. (2016) with scoped relations to model the association of types with
declarations and the representation of explicit substitutions in the instantia‑
tion of parameterized types. We generalize name resolution from resolution
of references to general queries for scoped relations. Furthermore, visibility
policies, which were global (per language), can be defined per query, enabling
namespace‑specific visibility policies. We simplify the framework by not includ‑
ing imports as a primitive, since these can be encoded using the scopes‑as‑types
approach.

• We extend the visual notation of scope graph diagrams with scoped relations,
which provides a useful language to explain patterns of names and types in
programming languages.

• We introduce Statix, a declarative language to specify type systems. The lan‑
guage provides simple guarded rules for the definition of user‑defined con‑
straints with unification, scope graph construction, and name resolution as
built‑in theories. We provide a formal definition of the declarative semantics
of Statix.

• We discuss the execution model of Statix and how it guarantees soundness of
resolution in incomplete graphs.

• We evaluate the scopes‑as‑types approach and the Statix language in three case
studies: the simply‑typed lambda calculus with records (STLC‑REC, featuring
structural sub‑typing; Pierce, 2002), System F (featuring parametric types; Gi‑
rard, 1972; Reynolds, 1974), and Featherweight Generic Java (featuring generic
class types; Igarashi et al., 2001).

Outline In Section 3.2 we present the revised scope graph framework and the cor‑
responding resolution calculus. We demonstrate how this formalism supports the
specification of type systems, including ones with structural and parametric types. In

3.2 Scopes as Types 51

Section 3.3 we introduce the Statix language and its declarative semantics. We show
the specification in Statix of typical patterns in programming languages with struc‑
tural and parametric type systems. In Section 3.4 we discuss the execution model
of the solver for the Statix language. In particular, we discuss resolution in incom‑
plete scope graphs. In Section 3.5 we discuss the evaluation of Statix by means of an
implementation in the Spoofax language workbench and several critical case stud‑
ies. In Section 3.6 we discuss how the approach compares to other approaches. We
conclude in Section 3.7.

3.2 Scopes as Types

Typing is deeply dependent on name resolution: a program phrase is typically typed
by resolving names that occur in it to names in its surrounding context. In many
interesting languages, types can also bind names; this is the case with record types,
object or class types, and dependent types. In this section we observe and illustrate
how types that bind names (records, objects, etc.) can be described by scopes in a
scope graph, and we present a revised definition of the scope graph framework of
Néron et al. (2015) and van Antwerpen et al. (2016) and show how it can be applied
to the definition of type systems.

3.2.1 Scope Graphs and the Resolution Calculus

In the scope graph approach, a program is reduced to a graph that represents its
binding information. The first part of Fig. 3.1 defines the structure of scope graphs.
A scope graph consists of scopes, connected by edges, containing data. A labeled edge
s1

l s2 between scopes s1 and s2 determines that the declarations in scope s2 are
reachable from scope s1. The label can be used to regulate visibility. A scoped datum
s r d associates a data term d with a scope s under relation r. For example, we
will use s : (x, T), to represent a declaration of name x in the scope s with type T,
and use x : T to denote the pair. There may be multiple data items associated with a
scope under the same relation.

Given this structure, we can now precisely characterize name resolution for a ref‑
erence as finding a path from its scope to a scope with a matching declaration. This
intuition is formally captured by the resolution calculus in the third part of Fig. 3.1,
which is parameterized by well‑formedness and visibility parameters defined in the
second part of Fig. 3.1. We discuss the judgments of the calculus.

The judgment G ` p : s1 ↠ s2 states that there is a path p from scope s1 to scope s2,
if there is a sequence of labeled scope edges starting at s1 and leading to s2. Cyclic
paths are not admitted: the s1 6∈ scopes(p) premise of (NR‑Cons) asserts that scope s1
does not occur in path p. The path p records the scopes and edge labels that it passes
through.

52 3 Scopes as Types

Syntax Parameters
data terms d ∈ D a set of data terms

labels l ∈ L a set of edge labels
relations r ∈ R a set of relation names

Syntax Definitions
scopes s ∈ S := some countable set

paths p ∈ P ::= s | s·l·p
edges Edges ::= s l s

datums Data ::= s r d

scope graphs G ∈ Graphs ::= 〈scopes ⊆ S , edges ⊆ Edges, data ⊆ Data〉
extended labels l̂ ∈ L̂ := L ∪ {$} where $ indicates the end of a path

Visibility Parameters
data term well‑formedness WFD ⊆ D

label well‑formedness WFL ⊆ L∗ defined as a regular expression
data order ≤d ⊆ D ×D partial order

label order <l ⊆ L̂ × L̂ strict partial order
Path Well‑formedness WFL ` p OK

(l1 . . . ln) ∈ WFL
WFL ` (s1·l1· . . . · sn·ln·sn+1) OK

Visibility Order <l ` p <p p

<l ` p1 <p p2

<l ` s·l·p1 <p s·l·p2

$ <l l
<l ` s <p s·l·p

l <l $
<l ` s·l·p <p s

l1 <l l2
<l ` s·l1·p1 <p s·l2·p2

Paths G ` p : s↠ s

(NR‑Refl)
s ∈ scopes(G)
G ` s : s↠ s

(NR‑Cons)
s1

l s2 ∈ edges(G) G ` p : s2 ↠ s3 s1 6∈ scopes(p)
G ` s1·l·p : s1 ↠ s3

Reachability WFD, WFL,G ` p : s r d

(NR‑Rel)
G ` p : s↠ s′ s′ r d ∈ data(G) WFL ` p OK d ∈ WFD

WFD, WFL,G ` p : s r d

Visibility WFD, WFL,≤d,<l ,G ` p : s r d

(NR‑Vis)

WFD, WFL,G ` p : s r d
6 ∃ p′d′ .

((
WFD, WFL,G ` p′ : s r d′

)
∧
(
<l ` p′ <p p

)
∧ (d′ ≤d d)

)
WFD, WFL,≤d,<l ,G ` p : s r d

Figure 3.1: Formal definition of scope graphs with syntax, visibility predicates, and resolution
calculus

3.2 Scopes as Types 53

The judgment WFD, WFL,G ` p : s r d states that data term (declaration) d is
reachable through path p from scope s under relation r with data term predicate WFD
and label well‑formedness predicate WFL. Label well‑formedness tests that the path
has a ‘good shape’ as defined by a regular expression. This is used to model policies
such as transitive vs. non‑transitive imports or the unreachability of lexical parents
of imported modules (van Antwerpen et al., 2016). Data term well‑formedness tests
whether we have found the datum we were looking for. For example, to resolve
a reference x we use a well‑formedness predicate that matches all declaration‑type
pairs y : T where x ' y, that is, the reference has the same name as the declaration
(but a different position in the program).

Finally, the judgment WFD, WFL,≤d,<l ,G ` p : s r d states that data term d is
visible through path p from scope s under relation r with the well‑formedness pred‑
icates WFD, WFL, and the orders ≤d and <l . The parameterization is chosen such
that algorithmic resolution remains feasible (see Section 3.4.2). The visibility order
p1 <p p2 (‘p1 shadows p2’) is defined as a prefix order over the labels of a path, in
terms of a label order <l . A special label $ indicates the end of a path, and is used
to order paths of different lengths. The prefix order only orders paths that have a
common prefix. That is, s1·l1·s2 6<p s′1·l′1·s′2·l′2·s′3 when s1 6= s′1 or l1 6= l′1. The data
order d ≤d d decides which declarations shadow each other, if multiple declarations
are reachable via shadowing paths. This is used to specify all visible declarations,
where a declaration only shadows a declaration that is reached via a shadowed path,
if it has the same name. Using the visibility order and data order, the rule (NR‑Vis)
defines that a data term d is visible through path p when there does not exist a data
term d′ reachable through p′ such that d′ shadows d and such that p′ is strictly pre‑
ferred over p. We will illustrate below how this captures the notion of shadowing in
name resolution.

In the rest of this section we show how scope graphs can be used in the definition
of type systems for languages with a variety of binding systems, including bindings
in types. We discuss how our approach compares to representations of binding in
traditional definitions of type systems.

3.2.2 Simply-Typed Lambda Calculus

First we consider the syntax and typing rules for the simply‑typed lambda calculus
with arithmetic expressions (STLC) in Fig. 3.3. The language consists of number con‑
stants, addition, function literals, variables, function application, and let bindings.

Name binding for STLC is typically modeled using type environments, which
are ordered lists of pairs associating a name with a type. Scoping is modeled by
extension of an environment with a new pair, which shadows any earlier declarations
of the same name (either by removing a matching pair or through definition of the
lookup function). The extended environment is only used for those sub‑expressions

54 3 Scopes as Types

where the binding is in scope. Scope graphs make the shadowing rules explicit by
separating the construction of the binding structure and the definition of resolution.

The typing rules in Fig. 3.3 use scope graphs and the resolution calculus instead
of type environments to model binding in STLC. The judgment G, s ` e : t states
that in the context of scope graph G and scope s, expression e has type t. The rules
are implicitly parameterized by a scope graph G, and use s1

l s2 as a shorthand
for s1

l s2 ∈ edges(G), and s r d for s r d ∈ data(G). The notation ∇s is used
to assert that a scope s is distinct in a scope graph.2 For example, the∇s2 premise in
the (STLC‑Fun) rule asserts that the scope s2 is distinct from s1 in the scope graph.

let x1 = 3 in
let f2 = fun(x3 : num) { x4 } in
f5 x6

0

1

P

x1 : num:

2

P

f2 : num -> num:

x6f5

3
P

x3 : num:x4

Figure 3.2: A program with nested lets

Scope Graph Structure In addition to defin‑
ing the types of expression forms, the typ‑
ing rules define the scoping structure of ex‑
pressions by relating the scope of an expres‑
sion to the scope(s) of its sub‑expressions.
Numbers, addition, and function appli‑
cation are non‑binding, non‑scoping con‑
structs. Thus, rules (STLC‑Num), (STLC‑
Plus), and (STLC‑App) state that the scope
of the sub‑expressions (if any) of these oper‑
ators is the same as the scope of the parent.
Rules (STLC‑Fun) and (STLC‑Let) introduce
a distinct scope s2 and associate a declara‑
tion xi : t for the binding occurrence with
that scope. A scope edge s2

P s1 makes
the declarations reachable from s1, also reachable from the scope s2, which is used
as the scope for the sub‑expression in which the binding occurrence is in scope: the
bodies of the function and let expression. Note that in (STLC‑Let), scope s1 is used
for the initialization expression, reflecting that the variable introduced is not in scope
in that expression.

Before we consider the rule (SLTC‑Id) and name resolution, it can be helpful to vi‑
sualize scope graphs using scope graph diagrams. To distinguish different occurrences
of the same name in a program we subscript names in programs by a position index.
For example, the program fun(x : num){ x } is written fun(x1 : num){ x2 }.
Fig. 3.2 shows an example program and its scope graph diagram. Scopes are depicted
by circles labeled with a number, and edges between scopes are depicted as labeled
edges l . Scope #0 in the scope graph in Fig. 3.2 is the scope of the context of the
outer let. Scopes #1 and #2 are the scopes of the first and second let, respectively.

2We can think of ∇s as a claim to “ownership” of scope s. Each scope in the scope graph can have
exactly one “owner”. In Section 3.4 we give a declarative semantics of Statix where this notion is formally
defined.

3.2 Scopes as Types 55

Syntax
integers z ∈ Z := {...,-1 ,0,1, ...}

identifiers x ∈ Id := some countable set
expressions e ∈ Expr ::= z | e + e | fun(x : t){ e } | x | e e | let x = e in e

types t ∈ Type ::= num | t -> t

Resolution Syntax Parameters
labels l ∈ L ::= P

relations r ∈ R ::= :

data terms d ∈ D ::= xi : t

Matching Declarations, Label Order and Data Order d ∈ DECL(xi) l̂ <l l̂ t ≤> t
xi ' xj

(xj : t) ∈ DECL(xi)
$ <l P t1 ≤> t2

Typing Rules G, s ` e : t
(STLC‑Num)

s ` z : num (STLC‑Plus)
s ` e1 : num s ` e2 : num

s ` e1 + e2 : num

(STLC‑Fun)
∇s2 s2

P s1 s2
: xi : t1 s2 ` e : t2

s1 ` fun(xi : t1){ e } : t1 -> t2

(STLC‑Id)
DECL(xi), P∗,≤>,<l ` p : s : xj : t

s ` xi : t (STLC‑App)
s ` e1 : t1 -> t2 s ` e2 : t1

s ` e1 e2 : t2

(STLC‑Let)
s1 ` e1 : t1 ∇s2 s2

P s1 s2
: xi : t1 s2 ` e2 : t2

s1 ` let xi = e1 in e2 : t2

Figure 3.3: Syntax and typing rules for a simply‑typed lambda calculus using scope graphs

Scope #3 is the scope of the function literal. The scopes are connected via P‑labeled
edges to their lexical parent scope (thus P is for parent). Declarations are depicted
as boxes associated with scopes via an : edge going from a scope to a declaration.
Lastly, references are depicted as boxes connected to scopes by edges going from the
reference to the scope. References are not formally part of the structure of scope
graphs (Fig. 3.1), but we include them in scope graph diagrams to indicate which
scope each reference is resolved relative to.

Reachability and Visibility Now we can consider how variables in STLC are resolved
in rule (STLC‑Id). The premise of the rule states that xi has type t if xi can be re‑
solved in scope s through path p leading to a declaration xj : t, such that there
is no other declaration with a matching name that shadows xj : t. The data well‑
formedness and label order used as parameters to resolve xi in (STLC‑Id) are defined
in Fig. 3.3. The declaration well‑formedness predicate DECL(xi) is parameterized by
an identifier xi with position subscript i as input, and identifies the set of all decla‑

56 3 Scopes as Types

rations with the same name as, but at positions different from, xi. The label well‑
formedness predicate for STLC is P∗, which reflects that a variable can be resolved
in any scope reachable through a sequence of parent edges. Declarations are not
ordered in STLC, and the ≤> order passed as parameter to the visibility judgment
in (STLC‑Id) is the order where all declarations are equal. The definition $ <l P
of the visibility ordering for STLC specifies that shorter paths are preferred over
longer paths. Thus, declaration in a scope that has a path with fewer P edges is
preferred, which formalizes the usual notion of shadowing based on on lexical prox‑
imity. For example, the reference x4 in the program in Fig. 3.2 reaches x1 and x3

since DECL(x4), P∗ ` s3·P·s2·P·s1 : s3
: x1 : num and DECL(x4), P∗ ` s3 : s3

: x3 : num.
However, because s3 <p s3·P·s2, we have that x4 resolves to x3.

3.2.3 Records and Structural Subtyping

Next we consider an extension of STLC with structural records. The language de‑
fined in Fig. 3.4 extends STLC with record literals, field access, record extension, and
a Pascal/JavaScript‑like with expression. Record types are structural, that is, record
types are not identified by name, but by a set of field‑type pairs. The type system fea‑
tures subtyping between record types: a function expecting a record as parameter can
be provided any extension of the expected record type. We discuss how to identify,
represent, compose, access, and compare record types.

Identifying Record Types In nominal type systems, types are identified by name. Infor‑
mation about the type is associated with that name. For example, with scope graphs
we can state s td (Point, rPoint), which associates with the type name Point some
representation rPoint of the record type. A record type can then be represented
as REC(Point) referring to the declaration of the type by its name. Such a repre‑
sentation is efficient since copying the type entails copying a reference to its repre‑
sentation. Furthermore, a type is directly related to its origin in a program. The
disadvantage of nominal types is that each variation of a type must be given a name
and that comparisons must be organized through relations between names. In struc‑
tural type systems, types are identified by their structure (Cardelli, 1988). This means
that new types can be created ‘on the fly’, that is, not all types have to be defined by
name. In previous work, van Antwerpen et al. (2016) show how to represent nomi‑
nal record types with scope graphs, but not how to express structural comparisons
and composition of such types. Here we show how to do that using scopes as types
and scope graph queries.

Representing Record Types The representation of record types requires a mapping
from field names to types. Pierce (2002) uses association lists to represent record
types. With scope graphs, we do not need a new representation: scopes provide a

3.2 Scopes as Types 57

Syntax
expressions e ∈ Expr ::= . . . | {(x = e)∗} | e.x | e extends e | with e do e

syntactic types t ∈ TypeExpr ::= num | t -> t | { (x : t)∗}
semantic types T, U ∈ Type ::= NUM | T → T | REC(s)

Resolution Syntax Parameters
labels l ∈ L ::= . . . | R | E and otherwise like STLC

Syntactic to Semantic Typing G ` JtK⇛ T

(T‑Num)
` JnumK⇛ NUM

(T‑Fun)
` Jt1K⇛ T1 ` Jt2K⇛ T2

` Jt1 -> t2K⇛ T1 → T2

(T‑Rec)
` Jt̄K⇛ T̄ ∇sr sr

: x̄i : T̄
` J{ x̄i : t̄ } K⇛ REC(sr)

Typing Rules (Records) G, s ` e : T

(ERS‑Rec)
s ` ē : T̄ ∇sr sr

: x̄i : T̄
s ` { x̄i = ē } : REC(sr)

(ERS‑Access)
s ` e : REC(sr) DECL(xi), (R|E)∗,≤>,<l ` p : sr

: xj : T

s ` e.xi : T

(ERS‑Extends)
s ` e1 : REC(s1) s ` e2 : REC(s2) ∇sr sr

R s1 sr
E s2

s ` e1 extends e2 : REC(sr)

(ERS‑With)
s ` e1 : REC(sr) ∇sw sw

R sr sw
P s sw ` e2 : T

s ` with e1 do e2 : T

Label Order l̂ <l l̂

$ <l P $ <l R $ <l E R <l P R <l E
Subtyping G ` T <: T

(<:‑Num) ` NUM <: NUM
(<:‑Fun)

` T2 <: T1 ` U1 <: U2
` T1 → U1 <: T2 → U2

(<:‑Rec)

∀xi p xj T.DECL(xi), (R|E)∗,≤>,<l ` p : s2
: xj : T =⇒

∃p′ U xk.DECL(xi), (R|E)∗,≤>,<l ` p′ : s1
: xk : U ∧ ` U <: T

` REC(s1) <: REC(s2)

Figure 3.4: Syntax and typing rules for a language with extensible records. The expression
syntax is extended from Fig. 3.3. The typing rules for functions are mostly the same as in
Fig. 3.3

58 3 Scopes as Types

natural representation for record types. For example, the x coordinate of a Point
type is represented as a declaration in the scope: sPoint

: x : num. Such a scope
could be associated with a type name to realize a nominal type system, as discussed
above. To realize a structural type system, we use the scope reference itself as a type, and
represent a record type as REC(sr). A difference with the traditional representation
of structural types as association lists is that scopes have identity. Thus, copying types
entails copying of references.

Since scopes are not part of the surface syntax of types, Fig. 3.4 defines two notions
of types: syntactic types and semantic types for use in typing rules. Fig. 3.4 defines a
relation ` JtK⇛ T that relates a syntactic type t to a corresponding semantic type T.
In particular, the (T‑Rec) rule defines how a syntactic record type is related to a scope
with a declaration for each field in the record type. We use the vector notation x̄ to de‑
note sequences and point‑wise application. The mapping from syntactic to semantic
types is used in the (ERS‑Fun) rule (not shown) to convert the syntactic type anno‑
tation on the formal parameter. The (ERS‑Rec) rule asserts that a record literal is
typed by a scope that has a declaration for each field name in the list, inferring the
type from the initialization expression. In the (T‑Rec) and (ERS‑Rec) rules we have
omitted the assertion that field names of record types need to be unique. This can be
expressed with a scope graph query that requires that a field name reference in the
record scope resolves to a single declaration.

Composing Record Types Traditional type environments and scope graphs can be
considered as a kind of explicit substitution (Abadi et al., 1991). The difference be‑
tween the approaches is in their treatment of extension of substitutions. For example,
consider the e1 extends e2 form, which creates a record by extending the record
computed by e2 with the record fields computed by e1. In a variation on the defini‑
tion by Pierce (2002), we allow a record extension to shadow fields from the extended
record. Using type environments as record types, with the operator Γ1 / Γ2 eagerly
defined to compose two environments such that bindings in Γ2 shadow those in Γ1,
the typing rule for extends can be defined as follows:

(Γ‑Extends)
Γ ` e1 :{xi:Ti

i∈1..n} Γ ` e2 :{xi:Ti
j∈1..m}

Γ ` e1 extends e2 :{xi:Ti
j∈1..m / xi:Ti

i∈1..n}

So, the expression {x=1, y=2} extends {x={z=4}} has type {x:num, y:num}.
A context resulting from a shadowing extension Γ1 / Γ2 loses information about the
structure of the original Γ1, because it eagerly merges the two substitutions.

By contrast, a scope graph representation retains the structure of the composition.
Consider rule (ERS‑Extends) in Fig. 3.4, which defines the extends form by creating
a new record type REC(sr) with scope edges to the record types of the two branches.
The R edge in (ERS‑Extends) makes the bindings in the s1 scope for the record ex‑

3.2 Scopes as Types 59

let r1 = {a2 = 23, b3 = {. . .}} in
let q5 = {b6 = 19} extends r7 in
let f8 = fun(p9 : {b10 : num}){p11.b12} in
f13 q14 + q15.b16

1 r1 : REC(2): 2
a2 : NUM

:

b3 : REC(3)
:

3

P

r7

4 5 b6 : NUM:q5 : REC(4):

E

R

6

Pf13

q14

q15

f8 : REC(8)→ NUM:

7

P

p9 : REC(8):

p11

8 b10 : NUM:

b12

b16

Figure 3.6: A program with records and functions

tension reachable from sr. Similarly, the E edge makes the bindings in the s2 scope
reachable from sr. Fig. 3.5 shows the resulting scope graph for the expression above.

1
2

E

3
R

x : REC(. . .):

x : NUM: y : NUM

:

Figure 3.5: Record extension

Thus, extensions are represented as edges that pre‑
serve the structure of the substitutions being merged.

The (ERS‑With) rule shows a variation of this pat‑
tern. The form with e1 do e2 (inspired by the dep‑
recated JavaScript construct) makes the fields of the
record computed by e1 available as local variables
in e2. This is modeled by the (ERS‑With) rule by creating scope edges from the
scope sw for the body e2 to the record scope via an R edge and to the lexical parent
scope via a P edge.

Accessing Record Types Field access e.x is an example of type‑dependent name reso‑
lution where a name is resolved relative to a type. The first premise of rule (ERS‑
Access) requires the expression e to have a record type REC(sr). The second premise
resolves the field x relative to the scope sr of that type using the resolution query
DECL(xi), (R|E)∗,≤>,<l ` p : sr

: xj : T. The declaration well‑formedness predi‑
cate DECL(xi) is defined in Fig. 3.3, and path well‑formedness is given by a regular ex‑
pression stating that resolution may follow any path via R and E edges. Record fields
can also be accessed using plain variables due to the with form. Since variables may
also be defined in lexical parents, the well‑formedness for variable resolution first

60 3 Scopes as Types

traverses a series of lexical parent edges before considering record (extension) edges:
DECL(xi), (P∗(R|E)∗),≤>,<l ` p : sr

: xj : T.
The visibility ordering <l in Fig. 3.4 states that record edges (R) are preferred over

both lexical parent edges (P) and extension edges (E). Consequently, declarations in
record scopes shadow lexical bindings (as intended for with expressions), and ex‑
tended record scope bindings (as intended for extends expressions). Consider the
resolution of the field access q15.b16 in Fig. 3.6. The variable q15 is resolved relative
to scope #6 to q5 with type REC(4). Hence, field b16 is resolved relative to scope #4
from which two declarations can be reached: b3 and b6. Since R <l E, the latter is
selected.

Comparing Record Types Finally, we consider the definition of subtyping for struc‑
tural record types. When a record of type REC(s2) is expected we may provide a
record of type REC(s1) provided that REC(s1) has at least all the fields of REC(s2).
This is expressed using the resolution calculus by means of querying the visible fields
of the scopes of the super type and sub type. The (<:‑Rec) rule in Fig. 3.4 asserts that
for each declaration xi with type T visible in scope s2 of the super type, xi resolves
to a declaration of type U in scope s1 of the sub type, and that U <: T. The (<:‑Rec)
rule corresponds to traditional structural record subtyping (Pierce, 2002, Fig. 16‑1).
For example, consider the function application f13 q14 in Fig. 3.6. f13 resolves to f8
with type REC(8)→ NUM and q14 resolves to q5 with REC(4). The rule for function
application (omitted) adapts (STLC‑App) to require that the type of the actual pa‑
rameter is a subtype of the type of the formal parameter. (This is the only rule using
the subtype relation.) This is the case in our example since REC(4) <: REC(8): the b6
field visible in scope #4 matches the b10 field of scope #8.

Summary A crucial difference between scope graphs and association lists is that
association lists represent an eager name shadowing policy (applied before doing
name resolution), while scope graphs support a lazy name shadowing policy (ap‑
plied during name resolution). The scopes as types approach scales to type systems
with binding patterns that go beyond lambdas and records, including type systems
for languages with classes; association lists alone do not.

3.2.4 Classes and Nominal Subtyping: Featherweight Java

Next we consider a type system for classes with subtyping, specifically for Featherweight
Java (FJ) (Igarashi et al., 2001). We show how nominal class identity and subtyping is
characterized by scope identity and paths in the scope graph. The syntax and typing
rules of FJ using scope graphs is summarized in Fig. 3.7 and 3.8. Assuming some
familiarity with FJ, we summarize the main highlights.

3.2 Scopes as Types 61

Syntax
names C,D,E,f,g,m,n,x ∈ Name := some countable set

class definitions L ∈ ClassDecl ::= class C extends C {(C f;)∗ K M∗}
constructors K ∈ KDecl ::= C((C f)∗){super(f∗);(this.f=f;)∗}

methods M ∈ Methods ::= C m((C x)∗){return e;}
expressions e ∈ Expr ::= x | e.f | e.m(e∗) | new C(e∗) | (C)e

semantic type T, U, V ∈ Type ::= INST(s)
method type M ∈ MethType ::= T∗ → T

class types L ∈ ClassType ::= CLASS(s)
Resolution Syntax Parameters

labels l ∈ L ::= P | S
relations r ∈ R ::= : | K

data terms d ∈ D ::= C : L | m : M | this : T | x : T | T̄

Figure 3.7: Syntax for Featherweight Java

Class Tables The original presentation of FJ relies on various data structures for
name resolution, notably class tables, type contexts, and the AST of classes them‑
selves. Names are mapped to class definitions via the class table. In turn, the class ta‑
ble is used in auxiliary relations that define how to retrieve association lists of names
and types for class members, by traversing the AST of classes. Thus, classes are used
as a data structure since they are not reducible to a simple association list represen‑
tation. But the AST of FJ programs is not an ideal data structure for reuse to define
name resolution for other languages with nominal subtyping. For such languages we
would have to re‑specify similar auxiliary relations to do name resolution using a dif‑
ferent AST. We show how the definition of a class table data structure is subsumed
by the use of scope graphs.

Syntactic and Semantic Types FJ has a single kind of syntactic type, namely class
names ranged over by C. The corresponding semantic type of a class name C is
an INST(s) type where s is the scope of the class declared as C. The (T‑Class) rule
in Fig. 3.8 translates a syntactic type to a semantic type by resolving the name in the
lexical context by following a sequence of P edges. The “root” scope is similar to a
class table: it binds all class declarations that a program defines and is a dominating
lexical context for all classes in a program. Whereas INST(s) represents an instance of
the class identified by scope s in the scope graph, the class type CLASS(s) represents
the definition of the class s, and is the type of declarations in the “root” scope.

Class Typing The structure of a class is reflected in the scope graph. The (FJ‑Class)
rule declares the name of a class (C) as being typed by the scope that defines it (sc) in

62 3 Scopes as Types

Syntactic to Semantic Typing G, s ` JCiK⇛ T

(T‑Class)
DECL(Ci), P∗,≤>,<l ` s : Cj : CLASS(sc)

s ` JCiK⇛ INST(sc)

Class Typing G, s ` L OK

(FJ‑Class)

s : Ci : CLASS(sc) sc
P s DECL(Dj), ϵ,≤>,<l ` p : s : Dk : CLASS(sd)

∇sc sc
S sd sc ` C̄h f̄j; K OK sc ` M̄g OK

s ` class Ci extends Dj { C̄h f̄j; K M̄g } OK

Field and Constructor Typing G, s ` C̄ f̄; K OK

(FJ‑FldK)

DECL(Cz), P,≤>,<l ` s : Cu : CLASS(s) s ` JD̄iK⇛ T̄ WFD>, S,≤>,<l ` p : s K T̄
s ` JC̄xK⇛ Ū s ` JĒkK⇛ V̄ Ū = V̄ s : f̄m : Ū s K T̄, Ū ḡj ' ḡh

s ` C̄x f̄y; Cz(D̄i ḡj,Ēk f̄g){super(ḡh); this.f̄m=f̄n} OK

Method Typing G, s ` M OK

(FJ‑Method)

s ` JD̄kK⇛ T̄ s ` JCiK⇛ T s : mj : T̄ → T ∇sm

sm
P s sm

: x̄g : T̄ sm
: this : INST(s) sm ` e : U ` U <: T

if (DECL(mj), S+,≤>,<l ` p : s : nh : V̄ → V) then T̄ = V̄ and T = V

s ` Ci mj(D̄k x̄g) { return e; } OK

Expression Typing G, s ` e : T

(FJ‑Var)
DECL(xi), P∗S∗,≤>,<l ` p : s : xj : T

s ` xi : T
(FJ‑Field)

s ` e : INST(sc)

DECL(fi), S∗,≤>,<l ` p : sc
: fj : T

s ` e.fi : T

(FJ‑Invk)
s ` e : INST(sc) DECL(mi), S∗,≤>,<l ` p : sc

: Ū → T s ` ē : V̄ ` V̄ <: Ū
s ` e.mi(ē) : T

(FJ‑New)

DECL(Ci), P∗,≤>,<l ` s : Cj : CLASS(sc) s ` ē : T̄

WFD>, ϵ,≤>,<l ` p : sc
K Ū ` T̄ <: Ū

s ` new Ci(ē) : INST(sc)

(FJ‑UCast)
s ` e : T s ` JCiK⇛ U ` T <: U

s ` (Ci)e : U
(FJ‑DCast)

s ` e : T s ` JCiK⇛ U ` U <: T U 6= T
s ` (Ci)e : U

(FJ‑Stupid)
s ` e : T s ` JCiK⇛ U ` T 6<: U ` U 6<: T stupid warning

s ` (Ci)e : U

Subtyping G ` T <: T

(<:‑Class)
` p : s1 ↠ s2 p ∈ S∗

` INST(s1) <: INST(s2)

Label Order and Data Well‑Formedness l̂ <l l̂ d ∈ DECL(xi) d ∈ WFD>

$ <l P $ <l S
xi ' x j

(xi : T) ∈ DECL(x j) d ∈ WFD>

Figure 3.8: Typing rules for Featherweight Java

3.2 Scopes as Types 63

the “root” scope of a program (s). The rule omits the assertion that field and record
names are unique in a class. (The : relation is overloaded to associate names with
either semantic types, class types, or method types. It is always clear from the con‑
text which kind of type a name is associated with.) The (FJ‑FldK) rule asserts that
fields and constructors are associated with class scopes, where the constructor pa‑
rameter types are recorded using the relation K . To resolve the parameter types of
a constructor we use a trivially true well‑formedness predicate WFD> in (FJ‑FldK).
The (FJ‑Method) rule asserts that well‑typed methods are associated with the class
scope, and that overriding methods have the same type signature as the overridden
methods in super classes.

class A1 { T f2; }
class B3 extends A4 { . . . }
class C5 extends B6 { . . . }
class D7 { . . . new C8().f9 . . . }

A1 : CLASS(1) 1 f2 : T:

B3 : CLASS(2) 2

S

C5 : CLASS(3) 3

S

D7 : CLASS(4)

4

f9

C8

0

:

:
:

:

P

Figure 3.9: Classes with inheritance. The
P edges from scopes #1, #2, #3 to scope #0
have been omitted.

Fig. 3.9 shows a program with four
classes, and the scope graph of this pro‑
gram. Each class has a name that is typed
as a CLASS(s) where s is the scope of the
class. Class scopes have a declaration for
each member. For example, A1 is associated
with the class scope that has a single decla‑
ration f2 of type T (a semantic type of T).
Class scopes are connected to the scope of
their super class via an edge labeled S (for
super) which makes the class members in su‑
per classes reachable via name resolution. S
edges are the result of resolving the extends
clauses of classes (FJ‑Class). For example,
the class scope for B is connected to the class
scope of A because A4 in the program resolves
to A1. (For brevity we have omitted the ex‑
tends clause references from the scope graph
diagram.) Thus scopes directly represent and expose the inheritance structure of
classes.

Expression Typing The expression typing rules in Fig. 3.8 stay close to the original
presentation of FJ by Igarashi et al. (2001); we discuss the generalizations we have
made. The (FJ‑Var) rule matches paths that either traverse a sequence of lexical par‑
ent edges, which makes formal parameters of methods as well as local fields reachable,
or traverse a sequence of super edges which makes fields in super classes reachable.
Thus, unlike the original presentation of FJ, field access need not happen via a quali‑
fied field access expression. The (FJ‑New) rule for new expressions dereferences the
constructor method of a class by resolving the K relation in the class scope sc; ϵ

denotes the empty regular expression, which matches a 0‑step path.

64 3 Scopes as Types

Subtyping Nominal subtyping allows the use of a sub‑class in the place of any of its
super classes: if A is a super type of B, then B can be used anywhere an A is expected.
The scope graph affords a straightforward characterization of this subtype relation‑
ship: any class member declaration that is reachable from the class scope of A is also
reachable from the inheriting class scope of B, because their scopes are connected via
an S edge. In other words, using scopes as types lets us define nominal subtyping as
path connectedness in a scope graph, as defined by (<:‑Class) in Fig. 3.8.

3.2.5 Parametric Polymorphism

Parametric polymorphism characterizes types that are parameterized by other types
and that can be instantiated by substitution. Thus to support parametric polymor‑
phism when the structure of types is given by scopes, we need a notion of substitu‑
tion over scopes in a scope graph. There are several ways to approach this task. A
naive definition of a substitution function would eagerly traverse the structure of a
scope graph to substitute named references that occur in the graph. Conceptually,
this eager approach produces a new scope graph where some identifiers have been
substituted. In other words, the approach duplicates parts of the scope graph. Our
goal is to support the implementation of practical type checkers, so we prefer a sub‑
stitution strategy that does not require inefficient duplication of scopes and scope
graphs.

We present an approach based on scopes with explicit substitutions that are lazily
applied during name resolution, as opposed to eager application before name reso‑
lution. We illustrate the approach with a specification of the type system of System F
in Fig. 3.10. System F extends the simply‑typed lambda calculus with explicitly pa‑
rameterized types, type quantification expressions, and type application expressions.
With the exception of parameterized types (X => t), the types in System F are rather
simple and absent of name binding. As such it is not a language where scopes are
an obviously well‑suited choice of representation for types. Yet the same pattern of
type parameterization occurs in languages with more interesting types, such Feather‑
weight Generic Java (FGJ), the extension of Featherweight Java with generics (Igarashi
et al., 2001). We use System F as an example language which illustrates the approach
to parametric polymorphism using scopes as types, and discuss how this approach
scales to FGJ.

Syntactic and Semantic Types There are two new kinds of syntactic and semantic
types in Fig. 3.10, as compared with Fig. 3.3. Syntactically, X => t denotes a forall
type that quantifies a type t over another type, ranged over by the named parameter X.
The corresponding semantic ALL(X, s) type quantifies a scope over a type. The (T‑All)
rule in Fig. 3.10 asserts that the scope sa of a semantic forall type is: (1) connected
to the lexical context scope s; (2) associated with the declared type variable using

3.2 Scopes as Types 65

Syntax
type identifiers X ∈ TypeId := some countable set

expressions e ∈ Expr ::= . . . | Fun(X){ e } | e [t]
syntactic types t ∈ Type ::= . . . | X => t | X
semantic types T, U, V ∈ Type ::= . . . | ALL(X, s) | X | πB(s)

Resolution Syntax Parameters
labels l ∈ L::= . . . | I and otherwise like STLC

Syntactic to Semantic Typing G, s ` JtK⇛ T

(T‑All)

∇sa sa
P s sa

V Xi
sa ` JtK⇛ T sa

B T
s ` JXi => tK⇛ ALL(Xi , sa)

(T‑Var)
DECL(Xi), P∗,≤>,<l ` p : s V Xj

s ` JXiK⇛ Xj

Expression Typing (Selected Rules) G, s ` e : T

(F‑All)

∇sa sa
P s sa

V Xi
sa ` e : T sa

B T
s ` Fun(Xi) { e } : ALL(Xi , sa)

(F‑TApp)

s ` e : ALL(Xi , sa) s ` JtK⇛ T
∇sk sk

I sa sk
σ Xi :=T

s ` e [t] : πB(sk)

(F‑Strict) s ` e : T ` T ⇒ U
s ` e : U

Type Normalization G ` T ⇒ T G, p ` T ⇒̇ T

(Strict‑Pi)

WFD>, I∗,≤>,<l ` p : s B T
p ` T ⇒̇ U
` πB(s)⇒ U

(Strict‑NotPi)
T 6= πB(s)
` T ⇒ T

(N‑Pi)
` πB(s)⇒ T p ` T ⇒̇ U

p ` πB(s) ⇒̇ U

(N‑Done)
s ` T ⇒̇ T

(N‑Num)
p ` NUM ⇒̇ NUM

(N‑Fun)
p ` T1 ⇒̇ T2 p ` U1 ⇒̇ U2

p ` T1 → U1 ⇒̇ T2 → U2

(N‑All)

WFD>, ϵ,≤>,<l ` p′ : sk
σ Xj :=T s′k

I sa

∇s′k p ` ALL(Xi , s′k) ⇒̇ T s′k
σ Xj :=T

p·I·sk ` ALL(Xi , sa) ⇒̇ T
(N‑Var)

WFD>, ϵ,≤>,<l ` p′ : sk
σ Xj :=T

if Xi = Xj then U = T else U = Xi
p ` U ⇒̇ V

p·I·sk ` Xi ⇒̇ V

Semantic Type Equality G ` T ∼= T

(Eq‑Num) ` NUM ∼= NUM
(Eq‑Fun) ` T1 ∼= T2 ` U1 ∼= U2

` T1 → U1 ∼= T2 → U2
(Eq‑Var)

Xi = Xj

` Xi ∼= Xj

(Eq‑All)

∇s′1 s′1
I s1 s′1

σ Xi :=X
∇s′2 s′2

I s2 s′2
σ Xj :=X

` πB(s′1) ∼= πB(s′2) ∇X
` ALL(Xi , s1) ∼= ALL(Xj, s2)

(Eq‑Pi1)

` πB(s)⇒ U
` U ∼= T
` πB(s) ∼= T

(Eq‑Pi2)

` πB(s)⇒ U
` T ∼= U
` T ∼= πB(s)

Label Order l̂ <l l̂

$ <l P $ <l I

Figure 3.10: Syntax and typing rules for System F (expressions and syntactic types extend
Fig. 3.3)

66 3 Scopes as Types

the V relation; and (3) associated with the semantic type in the body of the forall
type via the B relation. Semantic forall types are reminiscent of how parameterized
types are represented in the Dependent Object Types (DOT) calculus (Amin et al.,
2016; Amin and Rompf, 2017), where a parameterized type can be represented as
a two‑field record with an abstract type field (V), and another field whose type
may contain named references to the abstract type field. (Indeed, the scopes‑as‑types
approach was inspired by the treatment of type parameters in DOT.)

Rule (T‑Var) defines the semantic type of a type variable reference Xi to be the
type variable declaration Xj that the reference resolves to and that uniquely identifies
a declared type parameter.

Expression Typing Fig. 3.10 summarizes the typing rules for the syntactic forms that
introduce forall types (Fun(Xi){ e }) and eliminate forall types (e [t]). The intro‑
duction rule (F‑All) is similar to the (T‑All) rule. The (F‑TApp) rule asserts that there
is an instantiation scope sk with an explicit substitution of the parameter Xi by the argu‑
ment type T. This instantiation scope is associated with the scope of the forall type
via an instantiation edge I . Instead of eagerly propagating the explicit substitu‑
tion, the (F‑TApp) rule returns a type πB(s) representing a delayed projection of the
body of a semantic forall type. When needed, we apply strictness (discussed below)
to normalize projections. Not shown in Fig. 3.10 are the rules for the STLC fragment
of System F. The only difference from Section 3.2.2 is that function application uses
semantic type equality, which we also discuss below, to require that the type of the
actual parameter matches the type of the formal parameter.

Type Normalization Strictness ` T ⇒ U forces the application of delayed projections
that occur in the head position of T to obtain a normalized type U. Projections are
applied by using the resolution calculus in (Strict‑Pi) to resolve the nearest B rela‑
tion through a sequence of instantiation scopes (which correspond to delayed and
explicit substitutions), and then normalizing the resolved type with respect to each
instantiation scope.

The (N‑Done) rule matches on a path consisting of a single scope, that is, a 0‑
step path. The two most interesting rules for normalization are the (N‑All) rules and
the (N‑Var) rules. The (N‑All) rule normalizes a forall type by matching on a path
in reverse order (i.e., the order in which sequenced instantiation scopes have been
created), to augment the scope of a forall‑type with each explicit substitution found
along the projection path. The (N‑Var) rule also matches on paths in reverse order
and resolves the substitution in the instantiation scope sk. The substitution is only
applied if the resolved substitution is for a type variable parameter Xj that is syntac‑
tically equal to the variable Xi being normalized; that is, the position subscripts on
the identifiers must match. Because we use the declaration identifiers as the seman‑

3.2 Scopes as Types 67

tic type of type variable references, we avoid problems with shadowing and name
capture. Consider, for example, how type normalization applies to the term

(Fun(A1) { Fun(A2){ fun(x3:A4){ x5 } } }) [num].
The substitutionA1 :=numwill be recorded in the semantic forall type that is returned,
but will never substitute the semantic type of the reference in the innermost Fun
(i.e., A2) because it has a different position subscript.

Semantic Type Equality Fig. 3.10 also defines a notion of semantic type equality be‑
tween semantic types. The most interesting rule is the (Eq‑All) rule for forall types.
The premises of this rule assert that we create instantiation scopes which substitute
the parameter names by the same identifier X where X is chosen to be fresh. We then
compare the result of projecting the body of the semantic forall types in the context
of these instantiation scopes. This parameter instantiation makes alpha‑equivalent
forall types match. The (Eq‑Var) rule equates type variables by using syntactic equal‑
ity. Projections are compared by applying strictness as defined by the rules (Eq‑Pi1)
and (Eq‑Pi2).

class A1<X2> { X3 f4; }
. . .
m5 = new A6<T>();
m7.f8;
n9 = new A10<S>();
n11.f12;

1A1 : CLASS(1)

X2: X2

:

X3

f4 : X2:

3

I

X2 := T σ

f8

4

I

X2 := Sσ

f12

2m5 : INST(3) : n9 : INST(4):

Figure 3.11: Generic class with two instantiations

From System F to Generic Classes in
FGJ The typing rules in Fig. 3.10 de‑
fine an approach to substitution in
scopes that does not require ineffi‑
cient duplication of scopes and scope
graphs. Instead of eagerly propagat‑
ing substitutions, which result in du‑
plicating scope graphs, we record de‑
layed and explicit substitutions in the
scope graph, thereby sharing scopes
between different type parameter in‑
stantiations. This approach scales to
languages where types have interest‑
ing binding structure, such as Feather‑
weight Java with generic classes, FGJ.
For brevity, we omit the full specifica‑
tion of the type system for FGJ and in‑
stead discuss an illustrative example
program and its corresponding scope graph diagram. The artifact accompanying
this paper contains implementations of type checkers for both System F and FGJ in
Statix.

Fig. 3.11 shows a program with a class definition A with a type parameter X and
a single field f, typed with the type parameter X. The program also contains two

68 3 Scopes as Types

instantiations of Awith different type arguments. The field accesses m7.f8 and n9.f10
both resolve to the field in A. However, their type should be considered relative to
the specific instantiation of the type parameter. That is, m7.f8 has type T and n9.f10
has type S (for some types T and S).

The scope graph in Fig. 3.11 illustrates how generic class instantiation is modeled
using scope graphs: each generic class instantiation is modeled as an instantiation
scope (scopes #3 and #4 in the figure). The instantiation m5 = new A6<T>() gives
rise to scope #3 with the substitution X2 := T. As in System F, delayed substitutions
are applied to field types once a field is accessed, as opposed to eagerly when the class
is initialized. By delaying the substitution as an instantiation scope we save having
to duplicate the entire class scope when we instantiate the generic class A with a dif‑
ferent generic type argument S. The class members of the class scope for A (scope #1)
remain reachable via the I‑labeled instantiation edge between scope #3 and scope #1.

3.2.6 Discussion

As argued above, scope graphs provide a data structure for name binding and reso‑
lution that does not prematurely optimize for particular binding patterns. We have
shown that scope graphs can deal with type systems with parametric polymorphism
in a way that also does not prematurely optimize for particular binding patterns. By
recording substitutions explicitly in the scope graph we retain a history of substitu‑
tions to be applied to a type, and only during resolution of a particular relation do we
actually apply the substitutions. This avoids duplication of scope graphs, and makes
the approach promising for languages that do normalization during type checking
for types with rich binding structure. It also shows that scope graphs and the revised
resolution calculus presented in Section 3.2.1 provide a theory for name binding and
name resolution in type systems that scales to languages beyond the relatively sim‑
ple type systems that scope graphs were demonstrated to work previously (Bach
Poulsen et al., 2016, 2018; Néron et al., 2015; van Antwerpen et al., 2016).

The notions of normalization and semantic type equality in Fig. 3.10 are induc‑
tively defined over the syntax of types, which is language specific. Our goal with
scope graphs is to develop tools that are reusable between different languages. From
this perspective it is not ideal that type normalization and semantic type equality is
defined in a language‑specific way. The notions of type normalization and seman‑
tic type equality that we have defined for System F and FGJ follow a similar pattern
which indicates the existence of a schema for automatically generating notions of
strictness and type equality. An alternative would be to augment the resolution cal‑
culus to support applying substitutions along a path.

Typing rules that use scope graphs are close to traditional type system rules such
as those found in textbooks like Pierce’s (2002). Some rules that use scope graphs
are less concise than traditional rules due to the explicit passing of parameters to

3.3 Statix: Specification with Scopes and Constraints 69

the resolution calculus, but we argue that this source of verbosity is outweighed by
the benefits afforded by scope graphs: uniform treatment of name binding that does
not prematurely optimize for particular binding patterns. The distinction between
syntactic and semantic types found in type systems using scopes as types is rarely
made in traditional type system specifications, although it is not uncommon in type
system implementations where, for example, de Bruijn indices are commonly used
to represent bindings in types. Formal definitions of type equality and substitution
are commonly omitted from traditional type system specifications by alluding to the
existence of a “standard” substitution function and alpha renaming scheme. Never‑
theless, type system implementations must implement these notions. Thus the ad‑
ditional (as compared with traditional type system specification) rules for syntactic
to semantic typing, type equality, and type substitution all help bridge the gap be‑
tween type system specification and type system implementation, which is the goal
that this work is pursuing.

3.3 Statix: Specification with Scopes and Constraints

Type systems written in the style of the previous section do not immediately give
us executable implementations. In this section we introduce Statix, a specification
language to develop type checkers with scope graphs, which has precise declarative
and operational interpretations. Rules in Statix are close to the inference rules of the
previous section, but the language makes several finer points of those rules, that we
glossed over before, precise. We explain the language using an example specification
and define a formal declarative semantics.

Statix by Example The formal syntax of Statix is defined in Fig. 3.13. A Statix pro‑
gram consists of a collection of user‑defined constraint rules, together with a top‑level
constraint. Rules must be syntax‑directed, with non‑overlapping guards, and are ex‑
pressed in terms of equality, scope graph based name resolution, and user‑defined
constraints. We introduce the language using the constraint rules in Fig. 3.12, which
define the simply‑typed lambda calculus of Fig. 3.3.

The typing relation s ` e : T is expressed as the user‑defined constraint

typeOfExp(s,e,T)

Analogous to Fig. 3.3, Fig. 3.12 defines a rule for each expression form. A rule of
the form c(t̄) ← C states that a constraint matching the head c(t̄) holds, if the body
constraint C holds. Constraints are combined using conjunction C ∧ C. The body of
a rule may invoke user‑defined constraints by applying the predicate name to a list
of terms c(t̄). For example, the rule

typeOfExp(s,e1 + e2,T)← T = num∧ typeOfExp(s,e1,num) ∧ typeOfExp(s,e2,num)

70 3 Scopes as Types

typeOfExp(s, z,T)← T = num
typeOfExp(s,e1 + e2,T)← T = num∧ typeOfExp(s,e1,num) ∧

typeOfExp(s,e2,num)
typeOfExp(s,fun(xi:T1){ e },T)← ∃T2 . ∃sf.T = FUN(T1, T2)∧∇sf ∧ sf

P s ∧
sf

: (xi,T1) ∧ typeOfExp(sf,e,T2)

typeOfExp(s,xi,T)← xi in s : (xj, [T|[]])
typeOfExp(s,e1 e2,T2)← ∃T1 . typeOfExp(s,e1,FUN(T1, T2)) ∧

typeOfExp(s,e2,T1)

typeOfExp(s,let x=e1 in e2,T2)← ∃T1 . ∃sb. typeOfExp(s,e1,T1) ∧∇sb ∧ sb
P s ∧

sb
: (xi,T1) ∧ typeOfExp(sb,e2,T2)

Figure 3.12: Statix specification for a simply‑typed lambda calculus using scope graphs

uses typeOfExp to constrain the types of the sub‑expressions. All variables matched in
the head are bound in the body of a rule. Local variables are introduced using ∃v.C.
For example, the rule for fun introduces local variables for the return type T2 and
the function scope sf.

For ease of reading, we define each predicate using a set of rules and inline
matches in the rule head. This desugars to a single rule using guarded choice G ? C : C
in the formal syntax:

typeOfExp(s,e,T)← (e = z ? T = num : (e = e1 + e2 ? . . . : (. . . ? . . . : ⊥)))

Guarded choice is committed choice: for G ? C1 : C2, either G and C1 hold, or G does
not hold and C2 holds. Thus, if G holds, C2 is never considered. Guards are restricted
to existential quantification and term equality, to ease reasoning about coverage and
non‑overlapping rules.

Syntactic equality is expressed with the equality constraint t1 = t2. For example,
it is used to constrain the type to num in the rules for z and +. Note that these types
are written inline in the judgments of Fig. 3.3. Logically, they are equivalent, but,
operationally it matters whether terms appear in the body, or in the head, where
they are used for rule selection (see Section 3.4.1).

Three constraints assert facts about the scope graph. The constraint ∇t (pro‑
nounced: t is fresh) is satisfied if the scope value t is different from scope values t′

that appear as ∇t′ elsewhere. As such, one can think of this as claiming exclusive
ownership of the scope. An edge constraint t1

l t2 asserts the existence of an l edge
from t1 to t2. Similarly, a data constraint t1

r t2 asserts the existence of a t2 value
in the relation r in scope t1. Using these constraints, the rules in Fig. 3.12 for func‑
tion and let expressions specify their local scope, its parent edge, and the binding
declaration.

3.3 Statix: Specification with Scopes and Constraints 71

Signature
function symbols f , g ∈ F with arity(f) ∈ N

predicates symbols c, d ∈ C with arity(c) ∈ N

Definitions
term variables x ∈ V := some countable set

terms t, u ∈ T ::= x | f (t̄) | s | p | l | [] | [t|t] | (t, t)

guards G ∈ Guards ::= > | G ∧ G | t = t | ∃x.G

constraints C ∈ C ::= > | ⊥ | t = t | C ∧ C | c(t̄) | ∃x.C | G ? C : C

| ∇t | t l t | t r t

| query (c(t̄), c(t̄), c(t̄), c(t̄)) in t r t | t ∽P re

predicates pred ∈ Preds ::= c(ȳ)← C

program P ∈ Progs ::= let pred∗ in C

Figure 3.13: Syntax of Statix

Definitions substitution φ, θ : V → t scope support S ⊆ S

Constraint satisfaction G, φ |=S C

(DS‑True)
G, φ |=S >

(DS‑Eq)
t1 φ = t2 φ

G, φ |=S t1 = t2
(DS‑Conj)

G, φ |=S1 C1 G, φ |=S2 C2

G, φ |=S1tS2 C1 ∧ C2

(DS‑Disj‑L)
G, φ |=∅ G G, φ |=S C1

G, φ |=S G ? C1 : C2
(DS‑Disj‑R)

G, φ ⊭∅ G G, φ |=S C2

G, φ |=S G ? C1 : C2

(DS‑Pred)
(c(x̄)← C) ∈ P G, φ |=S C [t̄/x̄]

G, φ |=S c(t̄)
(DS‑RegExp)

tφ = l̄ l̄ in language of re

G, φ |=S t ∽P re

(DS‑Exists)
G, φ[t/x] |=S C x is fresh for φ

G, φ |=S ∃x.C
(DS‑Fresh)

tφ = s s ∈ S
G, φ |=S ∇t

(DS‑Edge)

t1 φ = s1 t2 φ = s2
(s1

l s2) ∈ edges(G)
G, φ |=S t1

l t2
(DS‑Rel)

t1 φ = s (s r t2 φ) ∈ data(G)
G, φ |=S t1

r t2
(DS‑Resolve)

WFD :=
{

d | G, φ |=∅ cwfd(u1, ..., un, d)
}

WFL :=
{

l̄ | G, φ |=∅ cwfl(u′1, ..., u′n, l̄)
}

d ≤d d′ := G, φ |=∅ c≤d(v1, ..., vm, d, d′) l <l l′ := G, φ |=∅ c<l(v′1, ..., v′m, l, l′)

t1 φ = s (p, t) ∈ t2 φ ⇐⇒
(

WFD, WFL,≤d,<l ,G ` p : s r t
)

no duplicates in t2 φ

G, φ |=S query
(

cwfd(u1, ..., un), cwfl(u′1, ..., u′n), c≤d(v1, ..., vm), c<l(v′1, ..., v′m)
)

in t1
r t2

Figure 3.14: Declarative semantics of Statix

72 3 Scopes as Types

Finally, resolution constraints specify queries on the scope graph. A resolution
constraint query

(
cwfd(ū), cwfl(ū), c≤d(ū), c<l(ū)

)
in t1

r t2 states that resolving
the relation r in scope t1, results in t2. The well‑formedness and order predicates
correspond to the parameters of the resolution calculus defined in Fig. 3.1. The well‑
formedness and order predicates can be partially applied, to make resolution context
aware.

For example, the variable rule uses the short‑hand notation xi in s : (xj,T) for
resolving data from a reference occurrence, which corresponds to

query (wfd(xi),wfl, ordd, ordl) in s : (xj,T).

The data well‑formedness is partially applied to the reference xi, and the result of
resolution must be a single declaration‑type pair. The label well‑formedness wfl
and data well‑formedness wfd are defined with the rules wfl(xi, ls) ← ls ∽P P∗ and
wfd(xi, yj)← x = y. The label order is defined in terms of thematch constraint t ∽P re,
which states that the list of labels t must match the regular expressions re. The label
order ordl and data order ordd define a lexical ordering with the rules ordl($, P)← >
and ordd(xi, yj)← >.

Declarative Semantics The declarative semantics in Fig. 3.14 gives a precise defini‑
tion of the meaning of the constraints in terms of a satisfaction relation G, φ |=S C,
witnessing that the constraint C is satisfied relative to the model G, φ with support S.
The notion of support is used to distribute ownership of scopes in the graph in a dis‑
joint fashion over the constraint. The notion of unique ownership over scopes in the
graph gives Statix constraints a separation logic flavor, which is visible in the satis‑
faction rules for the ∇t constraint and conjunction C1 ∧ C2. The intuition we gave
for∇ can be captured formally as∇x ∧∇y ∧ (x = y) ≡ ⊥. The rule for conjunction
separates the support S into two disjoint parts (S = S1 t S2) and distributes this among
the left and right operands. Entailment and equivalence of constraints are defined
as usual:

C1 ⊩ C2 ≜ ∀ G φ S.
(
G, φ |=S C1 =⇒ G, φ |=S C2

)
C1 ≡ C2 ≜ (C1 ⊩ C2) ∧ (C2 ⊩ C1)

We emphasize that due to the presence of scope ownership, Statix constraints do not
enjoy all the equivalences that, for example, ML‑constraints do (Pottier and Rémy,
2005). A general rule (C1 ⊩ C2) =⇒ (C1 ≡ C1 ∧ C2) does not hold, since both C1
and C2 may require ownership over the same scopes. This is consistent with the rules
for separating conjunction in affine separation logics.

3.4 Executing Statix Specifications

In this section we discuss how Statix specifications can be executed as type checkers.

3.4 Executing Statix Specifications 73

3.4.1 Constraint Solving by Simplification

The requirement to use Statix specifications as executable type checkers has guided
its design. In particular, the following three concerns have been important: 1. Spec‑
ifications should have a declarative meaning that is independent of the operational
interpretation. 2. Users should not be concerned with execution order when writ‑
ing specifications. 3. The implementation should not rely on expensive techniques
such as full back‑tracking, which make it difficult to reason about performance. To
achieve this, we take a constraint solving approach. User‑defined constraints are sim‑
plified, using the rules from the specification, to built‑in constraints, which are solved
using algorithms for unification and name resolution. By disallowing overlapping
guards, rule selection follows a committed choice strategy, that is, no backtracking is
needed. We use the example in Fig. 3.15 with Statix rules for a recursive let construct
to illustrate issues around order and soundness.

Constraint Simplification The solver maintains a state consisting of a set of constraints
to solve, a unifier, and a scope graph. The ultimate goal is to eliminate all constraints.
The resulting unifier and scope graph are the solution. We illustrate the simplifica‑
tion process by discussing the first steps of checking the example program in Fig. 3.15.
We start with a single constraint:

typeOfExp(#0,letrec odd1 = ...; even3 = ... in ...,T)

We assume a scope graph with a single scope #0. The constraint is simplified using
the first rule in Fig. 3.15, resulting in the constraints

∇sb0 ∧ sb0
P s ∧ bindOK(sb0, . . .) ∧ typeOfExp(sb0, . . . ,T)

A fresh unification variable sb0 is created for the locally quantified variable sb. Solv‑
ing ∇sb0 results in a fresh scope #1, which is added to the scope graph, as well as a
substitution sb0 7→ #1 in the unifier. The edge constraint sb0

P s is solved by adding
an edge to the scope graph from scope #1 to scope #0. Note the order: the edge could
only be added after the fresh scope was created. Next, the solver needs to ensure
that the constraint s : (x,T) from the bindOK rule is solved for both binds, before
attempting to resolve the references in the expressions. How the solver ensures that
this is the case is the subject of most of the rest of this section.

Delayed Constraints In general, the solver randomly selects the next constraint to
solve from the constraint set. A satisfied constraint results in an updated unifier and
scope graph, and the constraint is removed from the constraint set. If a user‑defined
constraint is simplified, the constraints from the applied rule body are added to the
constraint set. However, sometimes a constraint cannot be solved yet. For exam‑
ple, a guard constraint T = num cannot be discharged if T is a unification variable

74 3 Scopes as Types

typeOfExp(s,letrec b̄ in e,T)← ∃sb.∇sb ∧ sb
P s ∧ bindOK(sb, b̄) ∧ typeOfExp(sb,e,T)

bindOK(s,xi = e)← ∃T. typeOfExp(s,e,T) ∧ s : (xi,T)

letrec odd1 = fun(n2:num){ . . . even3(n4-1) . . . }
even5 = fun(n6:num){ . . . odd7(n8-1) . . . } in odd9 11

Figure 3.15: Statix rules for a recursive let extension of the simply‑typed lambda calculus rules
of Fig. 3.12 and an example program using the letrec construct.

without a substitution. In this case, the constraint is delayed, and put back into the
constraint set. Other constraints may instantiate T, after which the equality can be
tested. Just unifying T would not be sound in general due to the committed choice
strategy. Constraint solving continues until all constraints are resolved or remain de‑
layed. Similar techniques are found in other constraint solvers that support guarded
rules and constraints, such as CHR (T. Frühwirth and Brisset, 1995).

3.4.2 Name Resolution Algorithm

The calculus presented in Section 3.2.1 gives a precise definition of name resolution.
In this section we discuss the name resolution algorithm that is used in the implemen‑
tation of Statix. The algorithm essentially implements an ordered depth‑first search
in the scope graph. The well‑formedness predicate WFL is used to control depth, and
the label order <l is used to control breadth and cut‑off of the search. Cyclic paths
are also disallowed (by the condition on rule (NR‑Cons) in Fig. 3.1), so the algorithm
is terminating.

We show how the algorithm operates using the example scope graph in Fig. 3.16.
The parameters we show are for resolving the reference x3. Edges have labels P andQ.
Path well‑formedness WFL states that well‑formed paths cannot follow Q edges af‑
ter P edges. Data well‑formedness WFD matches declarations with the same name x
as the reference. The label order <l prefers Q over P, and local declarations over both.
Finally, the data order ≤> states that declarations via more specific paths always
shadow declarations reachable via less specific paths. Resolution starts in scope #3.

The dashed lines show the order in which the algorithm traverses the graph. The
search starts at scope #3 of the reference 1 , and tries the different labels in order.
The most specific label is $, for the local declarations. This scope has no local dec‑
larations, so the Q edge to #4 is traversed 2 . Again the algorithm starts with the
most specific label. In this case there are local declarations, and the path up to here
is well‑formed. The local declaration y2 is matched 3 , but the match fails, so the
search continues. There are no Q edges in scope #4, so P edges are followed next. Ac‑
cording to path well‑formedness, no more P steps are allowed. Therefore the search

3.4 Executing Statix Specifications 75

1 2Q

x1

3P

x3

4Q

y2

5P

WFL := P∗Q∗ $ <l Q $ <l P Q <l P
WFD := DECL(x3) t1 ≤> t2

1
2

3
45

6
7

Figure 3.16: Name resolution example. The dashed arrows visualize the search in the graph,
and the label numbers indicate the search order.

is cut‑off 4 , and continues at scope #3. After trying local declarations and Q edges,
the P edge is followed 5 , which is allowed at this point, because we are back at the
starting scope and the path is empty. The local declarations contain the matching
declaration x1, which is added to the results 6 . Next, the algorithm could continue
following Q edges. But according to the data order, the result found so far shadows
any results reachable via the less specific paths that are tried next, so the search is
cut off 7 , and the algorithm returns {(#3·P·#2,x1)} as the final result. Note that the
well‑formedness cut‑off can always be performed, but the order cut‑off only when
the data order is always true.

3.4.3 Sound Name Resolution

The declarative semantics of query constraints is expressed in terms of resolution in
a complete scope graph. However, during constraint solving, we gradually build
the scope graph. Invoking the resolution algorithm on an intermediate, incomplete
graph may yield a different result than invoking it on the final graph. This is poten‑
tially unsound, and should therefore be prevented. We explain the problem and our
solution using the example from Fig. 3.15.

Problem Fig. 3.17 shows some of the constraints that occur when checking our ex‑
ample, as well as the relevant fragment of the final scope graph. Scope #1 is the let
scope, while scopes #2 and #3 are the function scopes. We only show the references
and declarations for the let bindings. We discuss the constraints for binds, on lines 1
and 4, and the declaration and query they eventually simplify to, on lines 2 and 3,
and 5 and 6, respectively. We refer to the constraints by their line numbers.

Consider a state where 1 and 4 are simplified, but 2, 3, 5 and 6 remain. Intuitively,
we see that 5 must be solved before 3, and 2 before 6. This conclusion requires de‑
tailed knowledge of where declarations are added, and what names they have. An
easy approach is to delay all queries until the graph is fully known. This solution is
sound, because all queries are performed on the final graph. However, this solution
is also unsatisfactory, because the solver would not be able to solve type dependent
names, such as field accesses. Our goal is a solution that is sound, but does allow
interleaved building and querying of the scope graph.

76 3 Scopes as Types

bindOK(#1,odd1 = ... even3 ...) (3.1)

→ . . . #1 : (odd1,FUN(T1, U1)) . . . (3.2)

. . . even3 in #2 : (d1,S1) . . . (3.3)

bindOK(#1,even5 = ... odd7 ...) (3.4)

→ . . . #1 : (even5,FUN(T2, U2)) . . . (3.5)

. . . odd7 in #3 : (d2,S2) . . . (3.6)

(a) Bind constraints and part of their simplification

1
odd1 : T1 -> U1:

even5 : T2 -> U2:

2

P

even3

3

P

odd7

(b) Fragment of the final scope graph

Figure 3.17: Partial constraints and scope graph for the letrec example program.

Tracking Possible Scopes Extensions in the Constraint Set Our solution consists of two
parts. First, the solver tracks possible scope extensions in the constraint set. Second,
the resolution algorithm aborts when it searches a scope that may be incomplete.
We first consider the scenario where constraints 2, 3, 5, and 6 are in the constraint set.
Constraints 2 and 5 both extend scope #1 in the : relation. If the solver tried to solve
constraint 6, the resolution algorithm would search scope #3, then step to scope #1,
where it would try to find local data for the : relation. However, since there are
constraints in the constraint set that extend scope #1 in that relation, resolution is
aborted, and the query constraint delayed. This scheme forces constraints 2 and 5
to be solved before 3 and 6. However, possible incompleteness in other scopes, for
example the parent of scope #1, would not block solving these constraints.

The situation is more complicated when we consider user‑defined constraints.
For example, if the solver is in a state where constraint 1 is simplified to 2 and 3,
but 4 is not simplified yet. Solving constraint 3 next would be unsound, because
the declaration even5 is still missing in the scope graph. The fact that the rule for
bindOK contains a s : . . . constraint, allows us to conclude that scope #1, the first
argument to bindOK, may be extended in the : relation. However, the situation
is not always that simple. Consider the following three rules for a predicate c, all
extending a scope:

c(. . . , s, . . .)← · · · ∧ s : . . . ∧ . . .

c(. . .)← · · · ∧ ∇s ∧ s : . . . ∧ . . .

c(. . .)← · · · ∧ d(. . . , s, . . .) ∧ s : . . . ∧ . . .

The first rule is the case of bindOK, where the extended scope is passed as an argu‑
ment. Here we know how cmight extend the scope. In the second rule, the scope that
is extended is locally fresh. Because the scope is fresh, we know that the extension
does not concern any of the scopes already in the scope graph. In the third rule, the
scope is only restricted by a predicate d. Determining the potential scope value(s)

3.4 Executing Statix Specifications 77

may be impossible, or require a sophisticated data‑flow analysis. To keep things
simple, Statix does not allow rules of the third form. This restriction is reasonable if
the scope graph is seen as a rich environment. Although lookups originate in many
places, construction is inherently local. Computing the possible scope extensions for
all constraints is now a simple data flow analysis on a Statix specification. This static
information is used to track possible scope extensions for user‑defined constraints.

So far all scopes in the constraint set were known. In a situation where the con‑
straint set contains a constraint s1 : . . . , where s1 is a free unification variable, we
cannot be sure which scope can be extended. Therefore, as long as such a constraint
is present, all scopes are marked incomplete for the : relation. However, our rule
restrictions ensure that these scope variables are eventually substituted by constraint
arguments or fresh scopes.

3.4.4 Incompleteness

The technique presented above ensures that if a query is resolved, its result will not
be invalidated when the scope graph is extended. Therefore, soundness with respect
to the declarative semantics is achieved. However, this method over‑approximates
possible extensions, and does not take the values stored in relations into account.
Therefore, it is incomplete, and it is possible to define constraints that get stuck, be‑
cause the solver cannot find an order it knows to be safe.

In general, constraints get stuck if the extension of a scope depends on the resolu‑
tion of a query via that scope. To illustrate this, we use an example from FJ, shown
in Fig. 3.18. It shows an incomplete scope graph, which is the result of checking two
classes, A and B extends A. Sub‑classing is modeled by an S edge from sub‑class
to super‑class. Scope #1 of the super‑class is discovered by resolving A3 in scope #2,
after which the S edge is added. To solve these constraints, the resolution of A3 must
be allowed while scope #2 is incomplete in S.

Whether resolution is possible depends on the resolution parameters. The table
in Fig. 3.18 lists the possible values for well‑formedness, label order, and data order
for this scenario. The options are the allowed first step of the path, and the relative
specificity of labels P and S. First row: if the first step can only be a P step, the incom‑
pleteness in S is irrelevant, and the reference can be resolved. Second row: if the first
step can only be a S step, then the declarations are unreachable, and the constraints
cannot be solved. Third row: if both steps are well‑formed, the label order is rele‑
vant. If P is more specific than S, the reference can be resolved, provided the data
order agrees.

78 3 Scopes as Types

0

A1 : CLASS(1)
:

1 P

B2 : CLASS(2)
:

2P A3

A3 in #2 : (d,CLASS(s)) #2 S s

WFL P <l S P 6<l S

P.p Solved Solved
S.p Stuck Stuck

(P|S).p Solved if ≤d is always true Stuck

Figure 3.18: Scope graph, constraints, and stuckness for the different possible label well‑
formedness WFL, label order <l , and data order ≤d parameters

3.5 Evaluation

We have evaluated the expressiveness of the scopes‑as‑types approach and the Statix
language by means of several case studies implemented with the Spoofax Language
Workbench (Kats and Visser, 2010) extended with Statix.

Statix Implementation In this paper we have defined a Statix core language with
mathematical notation and a formal declarative semantics. We have also developed
a full fledged Statix programming language with a concrete ASCII notation embody‑
ing the design described in this paper. We have implemented the Statix language
itself with Spoofax. The implementation consists of a syntax definition in SDF3, a
type checker in NaBL2 (the precursor of Statix), and a solver in Java. The syntax
definition provides an Eclipse editor with syntax checking and highlighting of Statix
definitions. The NaBL2 definition provides type checking and reference resolution
(jump to declaration) for Statix definitions in the editor. The Statix solver interprets
the AST of a Statix specification applied to the AST of an object language program.
Currently, the solver only accepts or rejects an object language program. It does
not yet give error messages to explain a failure. The solver is integrated with ob‑
ject language editors and in the SPT testing framework (Kats et al., 2011). The Statix
language and solver are available in the current continuous releases of Spoofax.

Case Studies To validate the expressiveness of Statix and the operation of the solver,
we have developed Statix specifications for several model languages: STLC‑REC, Sys‑
tem F, and FGJ. These languages represent points in the design space of type systems
and are well‑known benchmarks to validate approaches and tools for type systems.
The languages are models in the sense that they are reduced to the essence of a feature
in type systems and abstract from details irrelevant to that feature. Thus, it becomes

3.6 Related Work 79

easier to appreciate the key ideas of the encoding. While such case studies do not
demonstrate that the approach scales to specification of full‑fledged languages (and
the feature interaction that comes with those), they do provide evidence of the ex‑
pressiveness of the approach. For each language we have defined a Spoofax project
including a syntax definition in SDF3, a static semantics definition in Statix, example
programs, and an SPT test suite to test the static semantics. The implementations pro‑
vide source code editors with syntax highlighting and type checking, and automated
execution of the test suites.

Validation We have validated the Statix definitions in two ways. First, for each lan‑
guage we have constructed test suites with key examples testing the corner cases of
the language. Second, we have constructed the definitions by closely following exist‑
ing formalizations, replacing traditional name binding mechanisms (environments,
association lists, class tables) with the corresponding scope graph mechanisms. In
Section 3.2 we have discussed in detail type system specifications of STLC, SLTC‑
REC, FJ, and System F. Those specifications are ‘backports’ from the Statix spec‑
ifications in our case studies to traditional inference rules using scope graphs for
name resolution. (The specification of FGJ combines the ideas of FJ and System F.)
These presentations do not suffer from the ‘clutter’ that comes from an encoding in
ASCII, but instead use the notational abstraction of mathematics (reducing judge‑
ments to turnstiles, vector notation for lists, concrete syntax instead of term syntax,
etc.), which should make it easier for the reader to appreciate the commonalities and
differences with standard formalizations. In Section 3.2 we have discussed how the
specifications for the case studies compare to standard formalizations of type sys‑
tems.

Artifact The Statix specifications from the case studies are available in the artifact
accompanying the paper, which is publicly available at https://github.com/MetaBorg
Cube/oopsla18‑artifact. The prototype implementation of Statix has been integrated
in the Spoofax Language Workbench.

3.6 Related Work

In this section we discuss how our approach to type system specification compares
to other approaches, focusing on the support for name binding and executability of
specifications as type checkers. In Section 3.2 we compared the scope graph approach
with representations for name binding in traditional type system definitions.

Name Binding Languages Name binding is a concern in all kinds of language engi‑
neering processes, and that can benefit from more specialized support. When for‑

https://github.com/MetaBorgCube/oopsla18-artifact
https://github.com/MetaBorgCube/oopsla18-artifact

80 3 Scopes as Types

t ::=
| x
| (t1, t2)
| let p = t in t' bind b(p) in t'

p ::=
| x b = x
| (p1, p2) b = b(p1) U b(p2)
| p1 | p2 b = b(p1) U b(p2)

Figure 3.19: Pattern binders in Ott (from Sewell et al., 2010)

typeOfExp(s,xi,T)← ∃xj . ∃T'. xi in s : (xj,T') ∧ eqTypes(T',T)
typeOfExp(s,(t1, t2),T1 × T2)← typeOfExp(s,t1,T1) ∧ typeOfExp(s,t2,T2)

typeOfExp(s,let p = t1 in t2,T2)← ∃T1 . ∃sl .∇sl ∧ sl
P s ∧ typeOfExp(s,t1,T1)

∧ typePat(sl ,p,T1) ∧ typeOfExp(sl ,t2,T2)

typePat(s,xi,T)← s : (xi,T)
typePat(s,(p1, p2),T1 × T2)← typePat(s,p1,T1) ∧ typePat(s,p2,T2)

typePat(s,(p1 | p2),T)← ∃s1. ∃s2.∇s1 ∧∇s2 ∧ s O s1 ∧ s O s2

∧ typePat(s1,p1,T) ∧ typePat(s2,p2,T)
∧ comp(s1, s2)

Figure 3.20: Pattern binders and types in Statix

malizing a language for use in mechanically verified meta‑theory, details of name
binding (e.g., substitution functions) are important, but tedious to define. Various
libraries and DSLs have been developed to automate the support for name binding
in proof assistants such as Coq. For example, AutoSubst (S. Schäfer et al., 2015) is
a Coq library that derives substitution and renaming functions and lemmas about
their properties from annotations on an inductive type definition; Ott (Sewell et al.,
2010) is a DSL to define type systems and reduction rules for languages with name
binding, from which it automatically generates data types and substitution func‑
tions for different proof assistant back‑ends; Lem (Mulligan et al., 2014) and Nee‑
dle & Knot (Keuchel et al., 2016) provide similar support. These tools follow similar
schemas to define bindings: an annotation in the constructor signature indicates that
a binding occurrence is bound in one or more sub‑terms of the binding construct.

Fig. 3.19 shows the definition of OCaml patterns in Ott, a non‑trivial example,
since the variables occurring (deep) inside the pattern p are bound in the body t'
of the let. To realize this, an auxiliary function b(p) is defined (alongside the in‑
ductive definition) that collects the binding occurrences. The typing rules for such
a language are defined separately, and assert that the sub‑patterns of the or‑pattern
declare the same variables. Fig. 3.20 shows the definition in Statix of the typeOfExp
and typeOfPat predicates for the same language. The predicates define the binding
and typing of expressions and patterns without a separate collection traversal. Pat‑
tern variable binders are added as declarations to the scope graph (4th rule) with a
constraint variable T as type. Unification with the requirements from the context and

3.6 Related Work 81

any references will specialize the type assignment. Checking that the branches of an
or‑pattern should define the same variables is modeled by creating a new scope for
each branch, and checking with the comp predicate that they declare the same vari‑
ables with the same types (similar to structural record comparison in Section 3.2.3).

The Ott definition for Lightweight Java (Strnisa and Parkinson, 2011) follows the
F(G)J formalization of Igarashi et al. (2001) by defining projections on syntactic en‑
tities to look‑up information instead of using binding specifications. By contrast,
our definition of F(G)J uses scope graphs for such non‑lexical bindings as well (Sec‑
tion 3.2.4).

Statix does not (yet) support generating infrastructure for proof assistants, al‑
though scope graph libraries exist for use in type safety proofs in both Coq (Bach
Poulsen et al., 2016) and Agda (Bach Poulsen et al., 2018). We intend to extend these
libraries to the scopes‑as‑types extension presented in this paper and connect Statix
type checkers to intrinsically‑typed definitional interpreters.

Abstractions for Type Checker Implementation The PLT Redex semantic specification
framework (Felleisen et al., 2009) can also be used to define type systems similar
in style to traditional inference rules using type environments. Redex supports the
definition of lexical binding forms as part of language definitions, which cause all
uses of the term to avoid capture (Stansifer, 2016). Its name binding DSL can express
only simple forms of name binding. Redex rules can be used as a random generator of
(well‑typed) terms (Fetscher et al., 2015; Lampropoulos et al., 2017), an interpretation
we intend to explore for Statix in future work. The Turnstile language (Chang et al.,
2017), which shares our goal of bridging specification and implementation, allows
writing a type judgement‑like syntax, which directly corresponds to a macro‑based
type checker implementation that reuses the binding mechanism (Flatt, 2016) of the
underlying macro system.

K is a framework aimed at the executable definition of dynamic semantics based
on rewriting (Rosu and Serbanuta, 2010). The context of evaluation (environment,
store) is represented by (nested) configurations, which can be accessed using powerful
pattern matching expressions. K can also be used to define static semantics as a set
of rules that rewrite a program to a type in abstract interpretation style (Ellison III,
2008). In that setting, configurations are used to represent the typing context. No
further abstractions are provided for the treatment of name binding.

The JastAdd attribute grammar system (Ekman and Hedin, 2006, 2007a; Hedin,
2009) uses reference attributes to link references to their declarations in the abstract
syntax tree. Name resolution is defined using inherited parameterized attributes
that search for a declaration node. For example, the definition of the resolution of a
field in a class in Fig. 3.21 first considers the member fields of a class, and if none is
found, it recursively continues the search in the superclass. This is a programmatic

82 3 Scopes as Types

syn FieldDecl ClassDecl.memberField(String name) {
for(int i = 0; i < getNumBodyDecl(); i++)

if(getBodyDecl(i).isField(name))
return (FieldDecl)getBodyDecl(i);

if(getSuper().type().memberField(name) != null)
return getSuper().type().memberField(name);

return null;
}

Figure 3.21: Field resolution in a class and its superclasses in JastAdd (from Ekman and Hedin,
2006).

encoding of the name resolution query in rule (FJ‑Field) in Fig. 3.8. Scope graphs
provide a reusable abstraction for characterizing such name resolution strategies.

Constraint‑Based Approaches The design of Statix was inspired by Constraint Han‑
dling Rules (CHR; T. Frühwirth, 2009), which have been used to define type checkers.
CHR provides ‘simpagation’ rules that can match multiple constraints in the con‑
straint set simultaneously, and thus extend or reduce the constraint set. Statix only
provides rules that consider a single constraint, to ensure deterministic execution.
The built‑in theory of name resolution replaces the constraint store to support the
context‑sensitive nature of type checking.

Specifying and implementing type checkers using constraints is an established
technique (e.g., Odersky et al., 1999; Pottier and Rémy, 2005; Simonet and Pottier,
2007; Sulzmann and Stuckey, 2008; Vytiniotis et al., 2011). Usually name resolution
is considered part of the constraint generation phase. When it is part of the constraint
language (e.g., Pottier and Rémy, 2005), the constraints mimic the (lexical) binding
structure from the object language, which is a limitation for the definition of lan‑
guages with type‑dependent name resolution. To extend Hindley‑Milner type infer‑
ence (Damas and Milner, 1982; Hindley, 1969; Milner, 1978) to System F, Pierce and
Turner (2000) and Odersky et al. (2001) developed bidirectional type checking, which
carefully controls the introduction of constraint variables for the inference of type
parameters. Our definition of System F (Section 3.2.5) does not include inference of
type parameters, but the bidirectional approach seems to be applicable.

3.7 Conclusion

We have demonstrated that the scope graph framework covers a wide range of name
binding patterns in programming languages, including structural and parameter‑
ized types. We have also presented the design of Statix, a language for the specifi‑
cation of type checkers that uses scope graphs to abstract from the stratification of
collecting and using binding information. We believe that the scope graph approach

3.7 Conclusion 83

has the potential for standardizing the treatment of name binding in programming
languages and their tools, just as context‑free grammars have done for syntax.

Acknowledgments We thank Reuben Rowe, Robbert Krebbers, Andrew Tolmach,
Robby Findler, Simon Peyton Jones, and the OOPSLA reviewers for their comments
on earlier versions of this paper. This research was funded by the NWO VICI Lan‑
guage Designer’s Workbench project (639.023.206).

II
Interpretation

4Knowing When to Ask

Abstract There is a large gap between the specification of type systems and the implementa‑
tion of their type checkers, which impedes reasoning about the soundness of the type checker
with respect to the specification. A vision to close this gap is to automatically obtain type check‑
ers from declarative programming language specifications. This moves the burden of proving
correctness from a case‑by‑case basis for concrete languages to a single correctness proof for
the specification language. This vision is obstructed by an aspect common to all programming
languages: name resolution. Naming and scoping are pervasive and complex aspects of the
static semantics of programming languages. Implementations of type checkers for languages
with name binding features such as modules, imports, classes, and inheritance interleave col‑
lection of binding information (i.e., declarations, scoping structure, and imports) and querying
that information. This requires scheduling those two aspects in such a way that query answers
are stable—i.e., they are computed only after all relevant binding structure has been collected.
Type checkers for concrete languages accomplish stability using language‑specific knowledge
about the type system.

In this paper we give a language‑independent characterization of necessary and sufficient
conditions to guarantee stability of name and type queries during type checking in terms of
critical edges in an incomplete scope graph. We use critical edges to give a formal small‑step opera‑
tional semantics to a declarative specification language for type systems, that achieves sound‑
ness by delaying queries that may depend on missing information. This yields type checkers
for the specified languages that are sound by construction—i.e., they schedule queries so that
the answers are stable, and only accept programs that are name‑ and type‑correct according to
the declarative language specification. We implement this approach, and evaluate it against
specifications of a small module and record language, as well as subsets of Java and Scala.

4.1 Introduction

In an ideal world, programming language designers should not have to deal with
accidental complexity when defining and implementing languages. Some aspects of
language design are already close to realizing this ideal. For example, parser genera‑
tors make it possible to obtain parsers from declarative grammar specifications, thus
abstracting over the accidental complexity of implementing parsing. There should

Published as Arjen Rouvoet, Hendrik van Antwerpen, Casper Bach Poulsen, Robbert Krebbers, and
Eelco Visser (2020a). “Knowing when to ask: sound scheduling of name resolution in type checkers de‑
rived from declarative specifications.” In: Proceedings of the ACM on Programming Languages OOPSLA.
DOI: 10.1145/3428248. Copyright © 2020 Owner/Author. Licensed under a Creative Commons Attribu‑
tion International 4.0 License.

https://doi.org/10.1145/3428248

88 4 Knowing When to Ask

be similar support for generating implementations of type checkers from declarative
specifications of type systems.

The variety of language features found in real‑world languages presents many
challenges in the way of this ideal. This paper focuses on the challenges presented by
name resolution, an aspect common to all programming languages. Many language
features found in actual languages interact with name resolution. Modules, imports,
classes, interfaces, inheritance, overloading, and type‑dependent member access to
objects and records are a few examples that are commonplace. Implementing type
checkers for languages with such features is complicated because the use of names
in programs causes dependencies between type‑checking tasks, and requires that
the construction of symbol tables and type environments is interleaved with query‑
ing those data structures. Evaluating a query too early may result in an unstable
answer—i.e., an answer that is invalidated by subsequent additions to the environ‑
ment or symbol table. A wrong answer can have far reaching consequences, either
compromising the soundness of the type checker, or later requiring backtracking on
an arbitrary amount of work that depends on the wrong answer.

Consider, for example, the valid Scala program in Fig. 4.1a. A type checker work‑
ing its way forward through the program would initially resolve import B._ to the
imported object M.B, and type check the remainder of the body of A under the re‑
sulting environment. If only then it encounters the local declaration of B on line 7, it
needs to redo the type checking of the body of A because the local definition shadows
the earlier imported declaration.

To avoid this, the interleaving chosen by the type checker must ensure that query
resolution is stable—i.e., that answers to queries that consult the symbol table are not
invalidated by subsequent additions to the environment or symbol table. This can
be a non‑trivial scheduling problem because environment and symbol table construc‑
tion can also depend on answering queries.

Languages often have many features that interact with name binding and disam‑
biguation, and as a consequence it can be difficult to construct schedules that guar‑
antee query stability. The simple valid Scala program in Fig. 4.1b shows for example
how classes and inheritance interact with name resolution. In this program, the f on
line 2 resolves to the def f on line 6; but for this resolution to succeed, the qualified
reference B.D on line 1 must first have been resolved to the D on line 4, to make the
bindings in class class D reachable from the body of class A. Resolving B.D in
turn depends on: (1) resolving the B in B.D to object B on line 4; and (2) resolving
the C in the extends clause for object B on line 4 to the C declaration on line 5.

Determining these dependencies requires a good understanding of the binding
and disambiguation rules of a language. The type checking algorithm must take all
these dependencies into account, so that names are only resolved once all informa‑
tion that is relevant to their resolution is collected. If this is the case, then the result

4.1 Introduction 89

1 object M { object B { ... }}
2 import M.B;
3 object A {
4 import B._;
5 ...
6 }
7 object B { ... }

(a) Forward reference to shadowing definition.

1 class A extends B.D {
2 def g:Int = f
3 }
4 object B extends C {}
5 class C {
6 class D { def f:Int = 1 }
7 }

(b) Inheritance in Scala.

Figure 4.1: Scala examples.

of name resolution is stable. Type checker implementations use various strategies
for stratifying or scheduling the collection and querying of name binding informa‑
tion. Every type checker must, implicitly or explicitly, solve this scheduling problem.
For example, Haskell’s binding restrictions ensure that binding collection and reso‑
lution can be separated into static passes over the program, whereas Scala and Rust
require type‑dependent name resolution, which requires interleaving type checking
and name resolution. A key property of sound strategies is that names are only re‑
solved after all the relevant information has been collected.

The concrete strategies are irrelevant for understanding and reasoning about the
underlying type system, but crucial to a correct implementation of the type checker.
This tension between implementation and specification is felt by language design‑
ers. For example, the Rust language developers write the following about specifying
name binding in the language:1

Whilst name resolution is sometimes considered a simple part of the compiler,
there are some details in Rust which make it tricky to properly specify and imple‑
ment.

And in reply to changes to the design and implementation of name binding, a con‑
tributor states:2

I’m finding it hard to reason about the precise model proposed here, I admit. I
wonder if there is a way to make the write up a bit more declarative.

A more declarative specification should allow reasoning about name binding with‑
out having to rely on an understanding of the operational details such as the schedul‑
ing of name and type queries. But if we want to obtain type checkers from these

1https://github.com/nrc/rfcs/blob/name‑resolution/text/0000‑name‑resolution.md
2https://github.com/rust‑lang/rfcs/pull/1560

https://github.com/nrc/rfcs/blob/name-resolution/text/0000-name-resolution.md
https://github.com/rust-lang/rfcs/pull/1560

90 4 Knowing When to Ask

declarative specifications, we need to be able to automatically construct sound sched‑
ules. In this paper we give a language independent explanation of necessary and suf‑
ficient conditions to guarantee stability of name and type queries during type check‑
ing. We use this to make declarative type system specifications executable as type
checkers for the specified language. Using this approach, we can guarantee that the
resulting type checkers are sound with respect to the formal declarative semantics of
the specifications, as well as confluent. These important properties of type checkers
are proven once‑and‑for‑all for languages specified using our formalism, rather than
on a language‑by‑language basis.

Problem We start from a specification of an object language’s static semantics in
the meta‑language Statix (van Antwerpen et al., 2018). Language specifications in
Statix are given by typing rules, written as predicates on terms, types, and a scope
graph (Néron et al., 2015). Scope graphs generalize language specific notions of type
environments and symbol tables. A distinguishing feature of Statix are its scope graph
assertions and queries, which can be used to give high‑level specifications of name
resolution. These assertions can express fine‑grained name resolution rules, which
enable high‑level specification of, for example, shadowing rules of Java and Scala.

The problem we face is to derive a type‑checker from a Statix specification. Sta‑
tix’s scope graph assertions and queries make it possible to give high‑level specifi‑
cations of name binding, but, at the same time, make the problem of deriving these
type checkers more difficult. In particular, we have to solve a generalized version of
the scheduling problem described above. That is, we need a general characterization
of the conditions under which it is sound to query symbol tables and type environ‑
ments during type checking. We then need to derive a type checker from a Statix
specification in such a way that these conditions are always satisfied.

The general approach to deriving type checkers from Statix specifications is al‑
ready sketched by van Antwerpen et al. (2018), who provide a Java implementation.
They explain the problem with unsound name resolution when queries answers are
unstable, and they claim that their implementation implements a sound strategy.
This strategy, however, is only informally described, and lacks evidence of its sound‑
ness.

This paper addresses both those deficiencies by formalizing the derivation of type
checkers from Statix specifications, and proving soundness. Our formalization of
the operational aspects revealed that the Java implementation of Statix is, in fact, not
confluent Rouvoet, van Antwerpen, et al., 2020c, Appendix A, which we address
in this paper by refining the scope graph primitives. Confluence is an important
property because Statix implements a non‑deterministic solver. It ensures that the
solver does not have to backtrack on evaluation order. In order to formalize the
soundness and confluence results, we develop a theory around the novel concept of
critical edges in scope graphs. We believe that this concept is a useful device in both the

4.1 Introduction 91

design of languages, and the implementation of their type checkers. We also hope
that the formalization of the operational semantics of Statix makes it feasible to port
the novel ideas of Statix about the high‑level specification of name binding to other
formalisms and type checker implementations.

Approach To enable this formalization, we first introduce Statix‑core. This core lan‑
guage refines and simplifies the previous formulation of the Statix meta‑language.
The declarative semantics of Statix‑core is similar to the declarative semantics of Sta‑
tix, and explains what are valid type derivations of a specified language. In other
words, it explains when a given object‑language program, together with a type assign‑
ment and a scope graph model of its binding, satisfies the specified static semantics
of an object language.

We equip this refined core of Statix with a novel small‑step operational semantics.
This operational semantics takes a specification and an object‑language program, and
then computes a type assignment and a scope graph, thus fulfilling the task of a type
checker for the object language. The key question of this paper arises when we try to
define how queries in Statix compute. What are the conditions that ensure that the
answer to a scope graph query is stable under future additions to the scope graph
model of binding in the program? Or, how do we know when to ask a query?

To make the condition for query answering precise, we introduce the new idea of
critical edges for a query in a scope graph extension, precisely characterizing missing
dependencies of the query. Conceptually, query answers that are computed in a
partial scope graph are stable if recomputing the answer in a complete model of the
program yields the same result. We will show that it is safe to answer a query in
a partial graph G when the complete model contains no critical edges for the query
with respect to G.

The absence of critical edges in the complete model can in practice not be checked
by a type checker because it requires knowing the complete model of binding up‑
front. We solve this by weakening the condition to a sufficient condition that can be
checked. We then impose a well‑formedness judgment on Statix‑core specifications
to also make this tractable in practice. Specifically, typing rules must have permission
to extend a scope in the scope graph to be able to make assertions on the scope graph.
In practice this means that although scopes can be queried from anywhere, they can
only be extended locally with new binding information.

We prove that the operational semantics of Statix‑core using the weaker sufficient
condition is sound for well‑formed specifications—i.e., it computes a type assignment
and scope graph model that satisfy the specification. Importantly, and in contrast to
the implementation of Statix by van Antwerpen et al. (2018), the non‑deterministic
operational semantics can also be proven confluent for the refined Statix‑core lan‑
guage. The confluence argument again uses critical edges to reason about stability
of query answers.

92 4 Knowing When to Ask

We implement the operational semantics and the static analysis that checks if all
rules have sufficient permissions to extend scopes in Haskell. We give specifications
of subsets of Java and Scala in Statix‑core (extended with recursive predicates). Using
these specifications we also test soundness of the reference implementation against
the Java and Scala type checker. These case studies provide evidence of the expres‑
siveness of Statix as a formalism, and show that the well‑formedness restriction does
not prohibit specifications of complex, real‑world binding patterns.

In summary, the contributions of this paper are:
• A semantic characterization of name resolution query answer stability in terms

of critical edges in an incomplete scope graph (§4.5.2).
• Statix‑core (§4.3), a constraint language with built‑in support for scope graphs,

which distills and refines the core aspects of the Statix language and its declar‑
ative semantics due to van Antwerpen et al. (2018).

• An operational semantics for Statix‑core (§4.4 and §4.5) that schedules name
resolution queries such that query answer stability is guaranteed, thereby al‑
lowing language designers to abstract from the accidental complexity of imple‑
menting name resolution.

• A proof that the operational semantics of Statix‑core is sound w.r.t. the declar‑
ative semantics of Statix‑core (§4.5.3). The key that enables this proof is a type
system for Statix‑core (based on permission to extend a scope) and the schedul‑
ing criterion that is built into the operational semantics of Statix‑core (based on
an over‑approximation of critical edges).

• MiniStatix, a Haskell implementation of Statix‑core extended with (recursive)
predicates. The implementation infers whether specifications have sufficient
permissions to extend scopes, and can type check programs against their declar‑
ative language specification.

• Three case studies (§4.6) of languages specified in MiniStatix: (1) a subset of
Java that includes packages, inner classes, type‑dependent name resolution of
fields and methods; (2) a subset of Scala with imports and objects; and (3) an
implementation of the LMR module system that is similar to the one in Rust.
The case studies demonstrate the expressive power and declarative nature of
Statix‑core, and test the approach against the reference type‑checkers of Java
and Scala.

4.2 Specifying & Scheduling Name Resolution

Programming languages with modules or objects (e.g., ML, Java, C], Scala, or Rust)
use very different name resolution rules than languages with only lexical scoping.
For example, the static semantics of non‑lexical static binding, such as accessing a
member of an object o.m, is to resolve the name m not in the local (lexical) scope, but in

4.2 Specifying & Scheduling Name Resolution 93

a remote scope (in this case the inner scope of the class declaration that corresponds to
the type of the reference o). Similarly, a name in Scala or Rust is not always resolved
in the lexical scope, but sometimes in an explicitly imported module or object scope,
whose definitions may be declared in a very different part of the program.

These richer scoping constructs lead to more subtle resolution and disambigua‑
tion rules. Scala, for example, applies different scoping rules for names defined in
the lexical scope (which can be forward referenced) compared to names that are im‑
ported (which cannot). Scala also applies different precedence rules depending on
whether an imported name is explicitly listed, or caught by a wildcard. Precedence
rules are often incomplete, in the sense that overlapping names sometimes lead to
ambiguous uses. This requires more information to be available in environments.

These aspects make it more difficult to both specify, and implement static seman‑
tics. In this section we discuss both specification and implementation. We first dis‑
cuss the role of name binding in the specification of static semantics (§4.2.1), and how
Statix as a formalism enables the high‑level specification of the above mentioned ea‑
tures (§4.2.2). We then discuss how name binding features contribute to a scheduling
problem for type checkers (§4.2.3). Finally, we show how the innovative features of
Statix impact this scheduling problem (§4.2.4). We will argue that there are two sides
to this. On the one hand, these features make the scheduling problem more difficult
because value dependencies are less explicit. On the other hand, the high level spec‑
ification of binding in Statix provides a semantic tool to think about the scheduling
problem and recover a provably sound schedule: critical edges. We end this section
with an overview of how we use critical edges to address the scheduling problem for
Statix.

4.2.1 Name Resolution: Non-lexical Static Binding and Disambiguation

The presence of non‑lexical name binding can easily complicate a specification, harm‑
ing conciseness, understanding, and maintenance of the static semantics rules. Typ‑
ing rules use type environments to propagate binding information through a program.
Type environments are appropriate and easy to use in the specification of static se‑
mantics for languages with only lexical binding because lexical binding follows the
nesting structure of the AST. This is not the case for languages with non‑lexical static
scoping, where binding information may flow through references (e.g., module im‑
ports), or against the nesting structure of the AST (forward references; Hedin, 2000).

To demonstrate the issues that arise in language specification, we consider a sim‑
ple Scala program. The program in Fig. 4.2a is a well‑typed Scala program with two
methods in an object o that mutually refer to one another. To specify the static se‑
mantics of such a list of mutually recursive definitions, we can follow the style of the
ML specification (Milner et al., 1997), which uses rules of the form C ` e⇒ E, with C
the type environment of the phrase e, and E the context generated by the phrase e.

94 4 Knowing When to Ask

object o {
def f:Int = g;
def g:Int = f

}

(a) Mutual binding.

T‑BODY
E + E′ ` bs⇒ E′

E ` { bs } ⇒ E′

T‑SEQ
E ` b⇒ E′ E ` bs⇒ E′′

E ` b;bs⇒ (E′ t E′′)

T‑DEF
E ` e : T

E ` (def f : T = e)⇒ { f : T}

(b) Typing of mutual binding using environments.

Figure 4.2: Scala example program and the corresponding typing rules.

The context C is downward propagating, whereas E is upward propagating. We
obtain the rules for block definitions shown in Fig. 4.2b. Name resolution behav‑
ior is the result of the way environments are combined in the different rules. The
mutually‑recursive behavior of the block is visible in rule T‑BODY, which updates the
type environment with the aggregated binding that has propagated upwards from
the block. The combination operator + in the premise of T‑BODY updates the envi‑
ronment such that it shadows bindings in E that are also in E′. The disjoint union t
in the conclusion of T‑SEQ merges the environments produced by the definitions in
the sequence, and enforces that the names do not overlap. We can see in this exam‑
ple that environments play two roles in these rules: to aggregate binding information
from the program, and to distribute it throughout the program. Aggregation ties back
into distribution at the scope boundary.

The update and disjoint union of environments are examples of bookkeeping op‑
erations that encode high‑level binding concepts: disallowing duplicate definitions
and shadowing respectively. Similarly, the ‘cycle’ in environment aggregation and
distribution encodes mutual recursion. Encoding this using environments is a rela‑
tively small matter here, due to the limited number of rules and binding features to
take into account. This becomes increasingly more difficult when we add language
features that interact with binding and that require more sophisticated disambigua‑
tion.

In particular, non‑lexical static binding complicates matters significantly: the def‑
initions in Fig. 4.2a are not just locally in scope, but can be accessed from remote use
sites, either qualified with the object o, or unqualified after importing object o. The
potential for remote use significantly increases the required effort for aggregating
and distributing binding facts. To lookup the structure of modules and classes, we
may want to refer to a symbol table. Thus we have to explain through our typing
rules how declarations generate unique entries in this symbol table. This requires
aggregating all the entries to the root of the program. For the purposes of disam‑
biguation, we may also need more structure in the environment. In Scala for exam‑

4.2 Specifying & Scheduling Name Resolution 95

ple, we need to look beyond the closest matching binding because additional binders
in outer scopes may make a reference ambiguous.

We argue that bookkeeping of environments is not a high‑level means for express‑
ing name resolution concepts of languages like Scala. Consequently, it is both un‑
necessarily hard to define rules that express the right semantics, and unnecessarily
difficult to understand the high‑level concepts from the written rules. Previous work
proposes Statix (van Antwerpen et al., 2018) to address this problem. In §4.3, we dis‑
cuss the concepts of Statix. We will show how Scala’s name resolution rules can be
understood using scope graphs, and made precise using Statix rules.

4.2.2 Declarative Specification using Scope Graphs in Statix

The problem of aggregating and distributing binding information is addressed by
Statix in two ways: 1. scopes have independent existence and can be passed around,
which allows extending scopes without the need for explicit aggregation, and allows
remote access without explicit distribution; and 2. shadowing behavior is specified
at the use site, allowing definitions to simply assert the scoping structure without
having to anticipate all possible uses. To achieve this, Statix typing rules are predi‑
cates on terms and an ambient scope graph. Nodes in the graph represent scopes and
binders, whereas (labeled) edges are used to represent (conditional) scope inclusion.
Nodes contain a data term that can carry the information of a binder.

The binding of the program in Fig. 4.2a can be summarized as the scope graph in
Fig. 4.3a. We write s 7→ t for a node with identity s and data term t. The nodes sR
and so represent the root scope and the object scope respectively. The latter is a
lexical child of the former, indicated by the L‑edge. The object scope contains two
declarations, indicated by the two D‑edges to declaration nodes, whose data terms
f:Int and g:Int contain the usual information about the binders.

Previous work has shown how scope graphs can be used to model many binding
structures (Néron et al., 2015; van Antwerpen et al., 2018; van Antwerpen et al., 2016).
The fact that this particular scope graph models the binding of the given program, is
made formal through a number of Statix rules, together with the declarative seman‑
tics of Statix. We give the required rules here using the Statix‑core syntax, so that we
can informally discuss how Statix constraints address the problems with declarative
specification of binding using environments explained above. We will explain the
formal syntax and declarative semantics of Statix‑core in §4.3.

The Statix‑core counterparts to the ML‑specification style rules for the mutual
binding in Fig. 4.2a are given in Fig. 4.3b. The Statix specification consists of con‑
straint rules, which define that the typing judgment in the conclusion holds if the
constraints in the premises hold. The phrases are typed in a lexical scope s, written

96 4 Knowing When to Ask

sr 7→ ()

so 7→ ()

L sf 7→ f : Int
D

sg 7→ g : Int
D

(a) Scope graph for Fig. 4.2a.

T‑BODY
(∇s′ 7→ ()) ∗ (s′ L s) ∗ (s′ ` bs)

s ` { bs }

T‑SEQ
(s ` b) ∗ (s ` bs)

s ` b;bs

T‑DEF
(s ` e : T) ∗ (∇s′ 7→ (f : T))

∗ (s D s′) ∗ noDups(s, f , s′)
s ` (def f : T = e)

(b) Typing rules using Statix‑core constraints.

Figure 4.3: Scope graph and Statix‑core rules for the example in Fig. 4.2.

suggestively as s ` t.3 Premises are separated using conjunction (∗). The fact that
blocks introduce new scope is expressed in the rule T‑BODY by asserting a scope s′ in
the scope graph (using∇s′ 7→ ...), connected to the lexical parent by an L‑edge (using
s′ L s). The declarations are asserted similarly in the rule T‑DEF using a D‑edge.

The first notable difference with the ML‑style rules is that the Statix rules have no
upward propagating context for aggregating binding. This is unnecessary because
of the reference semantics of scopes in Statix rules. The rule T‑DEF can directly as‑
sert the structure that a definition induces in the ambient scope graph. Because the
scope graph is a global model of binding, this structure does not need to be explicitly
aggregated or distributed.

The second difference is in the way that lexical shadowing is specified. Rather
than encoding this disambiguation rule using environment update in T‑BODY, the
Statix‑core rule only witnesses the structure of the scope graph model. Disambigua‑
tion is expressed directly in the rule for typing variables. We postpone the discussion
of scope graph queries that fulfill this purpose until §4.3. For now it suffices to know
that variable lookup works by finding minimal paths in the scope graph. Shadowing
can be expressed by using a lexicographical path order where D < L.

The third difference is that the rule T‑SEQ is a completely binding‑neutral rule.
The fact that definitions should be unique in their scope, is expressed directly as a
premise noDups(...) on the rule T‑DEF, rather than being encoded in the way that
sequencing aggregates binders. We leave the predicate abstract for now, but it is
specified using a graph query in the declaration scope.

Specification of languages with rich, non‑lexical name binding features is compli‑
cated when using environment‑based typing rules. Statix provides a general formal‑
ism that allows concise specification of these languages, by removing the concerns
of aggregating and distributing binding information from the typing rules.

3The form of this typing judgment is not enforced in Statix rules—i.e., Statix predicates do not have
to be defined exclusively over AST terms and can have multiple scope arguments.

4.2 Specifying & Scheduling Name Resolution 97

4.2.3 Sound Type Checkers Require Scheduling

We now turn to the problem of writing a type checker based on a specification of
static semantics, focusing on the difficulties surrounding name binding features. We
will argue that type checkers face a scheduling problem in constructing the relevant
environment and symbol table (or scope graph) to be able to type the names used
in a program. Consider again the typing rules in Fig. 4.2b. A type checker arriving
at the block faces the problem that the downward propagating input environment
is constructed from the upward propagating output environment. For this reason,
the type checker needs to be staged: it first needs to aggregate the binding from the
block, before it can type check the expressions in the right environment. This simple
example demonstrates how name binding induces dependencies between tasks in a
type checker. Name resolution (and thus type checking) is only sound with respect
to the typing rules if queries are only executed after all relevant information has been
aggregated.

The binding features of a language determine how difficult it is to find a sound
schedule. A language with forward references requires a schedule in which bind‑
ing aggregation happens before querying. In our simple example, the schedule can
be entirely static: one can always collect all definitions before ever typing their bod‑
ies. First class modules and type‑dependent name resolution require more dynamic
scheduling. For example, the resolution of a member name m in a Java or Scala ex‑
pression e.m(...) requires the type of e. Typing e can in turn depend on all kinds
of name resolution and type‑checking tasks. This means that name resolution cannot
be statically stratified.

When language engineers develop a type checker for a given language, they im‑
plement either such a statically stratified schedule as a number of fixed type‑checking
passes, or implement a method that in effect schedules type‑checking tasks dynami‑
cally (even if the scheduling is simply ‘on demand’). Soundness of the implemented
approach is judged by the language engineers. Our goal is to automatically obtain
sound type checkers from typing rules, and therefore we need a systematic approach
to solving the scheduling problem.

4.2.4 Sound Schedules from Statix Rules

In §4.2.3 we arrived at a sound schedule for the typing of mutually recursive bind‑
ing simply by lazily following the demand for dependencies. These dependencies are
explicit in the environment‑based rules of Fig. 4.2b. In languages with more com‑
plex scope and disambiguation rules, the dependencies of name resolution are not
as easy to determine. We have argued that environment‑based rules are difficult to
specify for such languages. Ensuring that those rules can be evaluated on demand
puts additional requirements on the rules, making it even more difficult to write
the specification (J. T. Boyland, 2005). (This is a known problem with canonical at‑

98 4 Knowing When to Ask

tribute grammars. We compare in depth to attribute grammars in §4.7.) By decou‑
pling scope from binding and name resolution rules in those scopes, Statix rules can
specify complicated languages without regard for dependencies. As a result, more
work is required to reconstruct the dependencies and a sound schedule from the
rules.

object o {
def f:Int = g;
import n._;
def g:Int = h

}
object n {

def h:Int = 42;
}

Figure 4.4: Scala exam‑
ple with mutual binding
and imports.

We illustrate this with the Scala program in Fig. 4.4,
which combines mutually recursive definitions with im‑
ports. The semantics of Scala are such that the definitions in
an object are mutually recursive, allowing the forward ref‑
erence g, while imports are sequential, only allowing refer‑
ences to the imported name h after the import statement. Lo‑
cal definitions have precedence over names imported in the
same block, regardless of the order in which the definitions
and imports appear in the program.

The scoping structure of our example is modeled with
the scope graph shown in Fig. 4.5. The dotted boxes show
in which scopes names are resolved, with arrows indicating
the resolution path. The definitions f and g are declared in
the object scope so. Because imports are treated sequentially,
import statements induce a scope, connected to the previous import or object scope
using a B‑edge. The import is represented by an I‑edge to the scope sn of object n.
The forward reference g resolves to the definition in the same scope. The reference
to h reaches the imported name via the B‑edge and the outgoing I‑edge.

sR

so 7→ o

D

L

sf 7→ f : Int
D

sg 7→ g : Int
D

B

sn 7→ n

D

L
sh 7→ h : IntD

I

g

n

h

Figure 4.5: Scope graph cor‑
responding to the program in
Fig. 4.4.

Name resolution can be specified in terms of
queries on the scope graph, which specify reachability
and visibility of declarations in terms of a regular ex‑
pression and an order on paths, respectively (§4.3.1).
In this Scala subset, a declaration is reachable if it can
be found in the scope graph via a path that matches
the regular expression B∗(LB∗)∗I?D. One can check
that all the paths indeed match the regular expres‑
sion.

During type checking, the scope graph is con‑
structed from an initial empty graph, by adding
more and more scopes and edges, until the graph is
a complete model of the binding and scoping struc‑
ture in the program. Name resolution is finding least
reaching paths in the scope graph. Although concep‑
tually simple, difficulty arises because scope graph
construction can depend on resolving queries as well as the other way around. This

4.3 Statix-core: A Constraint Language 99

is the case for imports, where the I‑edge depends on resolution of the named import.
In general, even the fact whether there is an edge at all can depend on name reso‑
lution. This means that scope graph construction must be interleaved with query
evaluation.

This raises the following concrete scheduling problem: Given a scope graph query,
a partial scope graph, and a partially satisfied type specification, is it sound to eval‑
uate the query now or should it be delayed? Conceptually, the answer is ‘yes, it is
sound’ if the answer to the query in the current partial model is the same as the an‑
swer in a complete model. The answer is ‘no, delay’ if the complete model contains
additional binding information that is relevant to the query at hand.

To specify what information is relevant, we introduce the notion of critical edges
for a query in a model with respect to a partial scope graph. An unstable resolution
answer means that a resolution path that is valid in the model graph is not yet a valid
path in the partial graph because some part of the final graph is missing. A critical
edge of a query is an edge along a resolution path in the model that is not present yet
in the partial graph, but whose source node is present. We can think of critical edges
as the root cause of instability, as they are the first missing step in a resolution path in
the model. Whether an edge is critical is determined based on the regular expression
that expresses reachability, which exactly demarcates the part of the scope graph that
will be searched.

Because the complete model is yet unknown, we cannot directly identify missing
critical edges. Instead, we look ahead at the remaining type checking problem to
determine whether any critical edges are still missing. In general, precise determi‑
nation may require arbitrary type checking, which would lead to a backtracking im‑
plementation. Instead, we approximate critical edges as weakly critical edges, whose
absence can be determined without backtracking. We show that our approximation
is sound for a subset of Statix specifications. Importantly, we can statically deter‑
mine if a specification is in this subset using a type analysis that we formalize as
permission‑to‑extend.

4.3 Statix-core: A Constraint Language

In this section we introduce Statix‑core, modeling the essential ingredients of Sta‑
tix (van Antwerpen et al., 2018): a framework for the declarative specification of
type systems. Statix specifications have a precise declarative semantics that speci‑
fies which scope graphs are models of the specification. They do not have a formal
operational semantics that can be used to find a model for a given program if it ex‑
ists. Such an operational semantics requires a sound scheduling strategy for name
and type resolution.

100 4 Knowing When to Ask

In §4.3.1 we first introduce scope graphs formally, together with a concise pre‑
sentation of its resolution calculus (Néron et al., 2015; van Antwerpen et al., 2016).
We then present the syntax (§4.3.2) and declarative semantics (§4.3.3) of Statix‑core.
Subsequently, in §4.4 and §4.5, we present the sound operational semantics using a
general delay mechanism for queries based on critical edges.

4.3.1 Preliminaries

Statix‑core is a constraint language extended with primitives for scope graph assertions
and queries. The assertions internalize scope graph construction, whereas the queries
internalize scope graph resolution. We discuss what a scope graph comprises, and
present resolution in scope graphs as computing the answer to a visibility query.

Scope graphs A scope graph G is a triple 〈S, E, ρ〉 where S is a set of node identifiers,
E is a multi‑set of labeled, directed edges, and ρ is a finite map from node identifiers
to terms. We will write SG , EG and ρG for projecting the three components out of a
graph G, and may omit the subscript when it is unambiguous. We will refer to the
term associated with a node identifier as the datum of a node. The complete syntax
of graphs and terms is given in Fig. 4.6. We write ϵ for the empty graph and G v G ′
for the extension order on graphs. On sets we use the notation X t Y to denote the
disjoint union of sets X and Y, X \ Y to denote the set difference, and x; X to denote
{x} t X.

Regular paths. Name resolution is modeled with regular paths in the graph. We write
G ` p : s w−→ sk to denote that p is a regular (acyclic) path in G, starting in s, ending
in sk, and spelling the word w along its edges. We define the operations src (_), tgt (_)
and labels (_) to act on paths and project out the source node s, target node sk, and
list of labels on the edges, respectively.

Graph queries. The answer to a reachability query s r D is a set of regular paths
s w−→ s′ such that w matches the regular expression r and the datum of s′ inhabits the
term predicate D:

Ans
(
G, s r D

)
=
{

p
∣∣∣ G ` p : s w−→ s′ and w ∈ L(r) and ρG(s′) ∈ D

}
We write L(r) for the set of words in the regular language described by r. A useful
device when we consider partial reaching paths is the Brzozowski derivative (Brzo‑
zowski, 1964) δwr of a regular expression r with respect to a word w, whose language
is L(δwr) = {w′ | ww′ ∈ L(r)}.

Often we are interested in a refinement of reachability, which we call visibility. A
datum is visible via a path p only if p is a least reaching path. Given reachability an‑

4.3 Statix-core: A Constraint Language 101

swer A, the subset of visible paths is defined as the minimum of A over a preorder R
on paths:

min(A, R) = {p ∈ A | ∀q ∈ A. Rqp⇒ Rpq}

Reachability is monotone with respect to graph extension: extending a graph with ad‑
ditional nodes and edges can only make more things reachable. In contrast, visibility
is non‑monotonic with respect to graph extension: extending a graph with additional
nodes and edges may obscure—i.e., shadow—information that was previously visi‑
ble.

We can now formally state the notion of stability of query answers that is key to
the correct implementation of static name resolution: a query (answer) q is said to be
stable between graphs G v G ′, when the answer set for the query is identical in both
graphs: i.e. Ans (G, q) = Ans (G ′, q).

4.3.2 Syntax of Statix-core

We introduce the constraint language Statix‑core for making assertions about terms
and an implicit, ambient scope graph. The syntax is defined in Fig. 4.6. We summa‑
rize the main syntactic categories.

Terms t are either variables x, compound terms f (t∗), graph edge‑labels l, graph
nodes s, or graph edges t l t. Importantly, nodes only appear as an artifact of sub‑
stitution in the operational semantics and do not appear in source constraint prob‑
lems. Literals for sets of terms t̄ are used to represent query answer sets in programs
and are generated from the disjoint union of singletons and empty sets. Sets of terms
are implicitly understood to exist up to reordering.

Constraints C define assertions on terms and an underlying scope graph. As we
shall see in §4.3.3, constraint satisfaction uses a notion of ownership, which gives the
semantics a separation logic (O’Hearn et al., 2001) flavor. This is reflected in the
syntax of Statix‑core where we use C ∗ C for separating conjunction, and emp and
false for the neutral and absorbing elements of ∗, respectively. The t1 = t2 constraint
asserts that t1 and t2 are equal. The x binder in existential quantification ∃x.C ranges
over all possible terms, whereas the x in universal quantification ∀x in t.C ranges
over members in a given finite set of terms t.

The assertions on the ambient scope graph G come in two flavors: node and edge
assertion. The former is written ∇t1 7→ t2 and assert that t1 is a node s ∈ SG such
that ρG(s) = t2. The node assertion gets unique ownership of s, such that no other
node assertion can observe the same fact about the model G. Similarly, edge asser‑
tions t1

l t2 assert unique ownership of an edge (t1, l, t2) ∈ EG . The dataOf(t1, t2)

constraint asserts that the data associated with node t1 is t2.
Query constraints (query t r D as z.C) internalize the reachability queries from

§4.3.1: we query node t for the set of all reaching paths over the regular expression r

102 4 Knowing When to Ask

Signature
l ∈ I label
f ∈ F term constructor symbol
r ∈ R regular expression

Variables
x ∈ X term variable
z ∈ Z set variable
s ∈ V node name

Terms
t ∈ T ::= x variable

| f (t∗) compound term
| l | s label and node

Sets of Terms
t ::= z set variable
| ζ set literal

ζ ::= ∅ empty set
| {t} singleton set
| ζ t ζ disjoint union

Graphs
G ::= 〈S ⊆ V , E ⊆ (V × I × V) , ρ ⊆ (V ⇀ T)〉
Constraints
C ::= emp | false true and false

| C ∗ C separating conjunction
| t = t | ∃x.C term equality and quantification
| single(t, t) | ∀x in t.C set singletons and quantification
| min(t, R, t) set minimum
| ∇t 7→ t | t l t node and edge assertion
| query t r D as z.C | dataOf(t, t) graph query and data retrieval

Figure 4.6: Syntax of Statix‑core.

to nodes whose data satisfy the predicate D, and bind the query result to z in C.
Queries yield sets of paths (embedded as terms) which motivates the need for set
literals, forall quantification over these, and the single(t, t) constraint which asserts
that t is a singleton set containing just the element t. The constraint min(t, R, t′) as‑
serts that the latter set of terms is the minimum of the former over the preorder R and
is used to specify disambiguation of a set of reaching paths to the set of visible paths.
We implicitly convert between mathematical sets and term set syntax where neces‑
sary. We assume that the set F of term constructor symbols contains the necessary
constructors to encode paths.

4.3.3 Declarative Semantics of Statix-core

The meaning of constraints is given by the constraint satisfaction relation that is induc‑
tively defined by the rules in Fig. 4.7. Satisfiability is expressed as G ⊨σ C, stating
that the graph G satisfies the closed constraint C with graph support σ = 〈S, E〉, where
S ⊆ SG and E ⊆ EG . In case the satisfaction judgment holds, we say that G is a model
for the constraint C.

We lift the declarative semantics to open constraints in the usual way and write
G, φ ⊨σ C to denote G ⊨σ Cφ. We also define constraint entailment ⊩ and equiv‑
alence a`, which we will use when we consider the properties of the operational

4.3 Statix-core: A Constraint Language 103

G ⊨σ C Scope graph G satisfies constraint C with support σ

EMP

G ⊨⊥ emp

CONJ
G ⊨σ1 C1 G ⊨σ2 C1

G ⊨σ1tσ2 C1 ∗ C2

EQ
t1 = t2

G ⊨⊥ t1 = t2

EXISTS
G ⊨σ C [t/x]
G ⊨σ ∃x.C

SINGLETON

G ⊨⊥ single(t, {t})

MIN
t′ = min(t, R)

G ⊨⊥ min(t, R, t′)

FORALL‑EMPTY

G ⊨⊥ ∀x in ∅.C

FORALL
G ⊨σ1 C [t1/x] G ⊨σ2 ∀x in t2.C
G ⊨σ1tσ2 ∀x in ({t1} t t2).C

NODE
s ∈ SG ρG (s) = t
G ⊨〈s,∅〉 ∇s 7→ t

EDGE
(s1, l, s2) ∈ EG

G ⊨〈∅,(s1,l,s2)〉 s1
l s2

QUERY
G ⊨σ C

[
Ans

(
G, s r D

)
/z
]

G ⊨σ query s r D as z.C

DATA
ρG (s) = t

G ⊨⊥ dataOf(s, t)

Figure 4.7: Statix constraint satisfiability.

semantics:
ENTAILS
∀G, φ, σ. (G, φ ⊨σ C1 implies G, φ ⊨σ C2)

C1 ⊩ C2

EQUIVALENT
C1 ⊩ C2 C2 ⊩ C1

C1 a` C2

The graph support declaratively expresses ownership of graph structure in con‑
straints. The role of support in constraint satisfiability gives the resulting logic a
separation logic flavor. Support is distributed linearly, which means that we get the
constraint equivalences of linear logics: conjunction is commutative and associative
and has emp as its identity and false as the absorbing element, but the left and right
elimination rules of conjunction do not hold.

We lift set operations pointwise to graph support. A particularly important op‑
eration is the disjoint union, written σ1 t σ2, which is defined as σ1 ∪ σ2, if and only
if σ1 ∩ σ2 is empty. We write ⊥ to denote empty support and distinguish fully sup‑
ported models from unsupported ones:

G ⊨〈SG ,EG 〉 C

G ⊨ C
SUPPORTED

Intuitively, a model G is supported by a constraint C when every node and edge in
it is asserted by C. For top‑level constraints, we are exclusively interested in sup‑
ported models. Models that are not fully supported at the top‑level contain “junk”:
graph structure that is not asserted by the Statix specification. For our problem do‑
main it does not make sense to consider those models, as they would contain binding

104 4 Knowing When to Ask

structure that does not correspond to the input program. Not every constraint that
has a model also has a supported one. Consider for example the following constraint:

∃s.
(
query s P∗ D as z. (∃x.single(x, z))

)
Whenever D is inhabited, there are clearly graphs that satisfy the constraint. None of
those graphs are supported, however, because there are no node or edge assertions.
This means that the whole constraint has empty support and the empty graph is not
a model of the query.

4.4 Solving Constraints

Our goal is to derive, from the Statix specification of a type system, an executable
type checker. A sound type checker should take a specification and an input pro‑
gram e and construct the ambient scope graph G such that G and e together obey the
specification. Or, if and only if the program does not obey the specification, produce
an error. Our approach to this is to equip Statix‑core with an operational semantics
that reduces constraints, as generated over a program, to a graph that satisfies the
constraint according to the declarative semantics, or rejects the constraint if and only
if such a graph does not exist. In this section we describe such an operational seman‑
tics without queries. We show that the operational semantics enjoys confluence and
soundness with respect to the declarative semantics. Extending the operational se‑
mantics to queries requires us to schedule constraint solving such that the (implicit)
dependencies between graph construction and query resolution are appropriately re‑
spected. In §4.5 we formally discuss a naive, unsound strategy, and develop a sound
strategy derived from a formal characterization of a criterion for answer stability:
absence of critical edges in graph extensions.

4.4.1 The Small-Step Operational Semantics

The operational semantics of Statix without queries is a small‑step semantics defined
on state tuples

〈
G | C

〉
, where G is a graph and C is a set of constraints that is repeat‑

edly simplified. The interesting rules are displayed in Fig. 4.8. The full operational se‑
mantics can be found in Rouvoet, van Antwerpen, et al. (2020c, Appendix B). Seman‑
tically we treat the constraint set as a large conjunction and we non‑deterministically
pick a constraint from this set to perform a step on.

A constraint C is solved by constructing an initial state κ as
〈
ϵ | {C}

〉
and repeat‑

edly stepping until a final or stuck state κ′ is reached. We say that the operational
semantics accepts C iff it reaches a final state

〈
G | ∅

〉
and rejects C iff it reaches a final

state
〈
G | {false}

〉
. Any other states in which we cannot reduce by taking a step are

said to be stuck.

4.4 Solving Constraints 105

κ → κ′ State κ steps to κ′

OP‑CONJ〈
G | (C1 ∗ C2) ; C

〉
→
〈
G | C1; C2; C

〉 OP‑EQ‑TRUE
t1 φ = t2 φ φ is most general〈
G | (t1 = t2) ; C

〉
→
〈
Gφ | Cφ

〉
OP‑EQ‑FALSE

¬∃φ.t1 φ = t2 φ〈
G | (t1 = t2) ; C

〉
→
〈
G | {false}

〉
OP‑EXISTS

y is fresh for G and C〈
G | (∃x.C) ; C

〉
→
〈
G | C [y/x] ; C

〉
OP‑SINGLETON‑TRUE〈
G | single(t,

{
t′
}
); C
〉
→
〈
G | (t = t′); C

〉 OP‑SINGLETON‑FALSE
¬∃t′.t =

{
t′
}〈

G | single(t, t); C
〉
→
〈
G | {false}

〉
OP‑NODE‑FRESH

s /∈ S〈
〈S, E, ρ〉 | (∇x 7→ t); C

〉
→
〈
〈(s; S), E, ρ[s→ t] [s/x]〉 | C [s/x]

〉
OP‑NODE‑STALE

t2 is not a variable〈
G | (∇t2 7→ t1) ; C

〉
→
〈
G | {false}

〉 OP‑DATA
ρ(s) = t2〈

G | dataOf(s, t1); C
〉
→
〈
G | (t1 = t2); C

〉
OP‑EDGE〈
〈S, E, ρ〉 | (s1

l s2); C
〉
→
〈
〈S, (s1, l, s2) ; E, ρ〉 | C

〉
Figure 4.8: Operational semantics of Statix without queries (complete rules in Rouvoet, van
Antwerpen, et al. (2020c, Appendix B)).

106 4 Knowing When to Ask

The rules for the usual logical connectives (emp, false, C1 ∗ C2, =, ∃, ∀, and single)
are standard. The rule for answer set minimums simply proceeds by computation.
For ∇t1 7→ t2 there are two rules. If t1 is a variable x, rule OP‑NODE‑FRESH will
extend the graph with a fresh node s, claim unique ownership over it, and substi‑
tute s for x everywhere. If t1 is not a variable, specifically if it is a node, then it
must be owned already and the rule OP‑NODE‑STALE rejects the constraint by step‑
ping to {false}. For example, both rules would be executed once for the specification
∇x 7→ () ∗ ∇x 7→ (): one of the constraints gets ownership, and the other fails to
get it. Edge assertions t1

l t2 construct new edges in the graph via OP‑EDGE when
both endpoints have become nodes. Multiple edges with the same label between
the same endpoints can exist separately—i.e., there is no edge counterpart to the be
OP‑NODE‑STALE rule. Data assertions dataOf(t1, t2) compute by unification when the
node t1 becomes ground.

4.4.2 Properties of the Operational Semantics

We will show that the operational interpretation of a Statix‑core specification is sound
with respect to the declarative reading. That is, if the operational semantics accepts a
constraint C, then the resulting graph is a supported model for C. And additionally, if
the operational semantics rejects a constraint C, then there exists no supported model
for C. From the perspective of the object language semantics defined in Statix‑core
this means that the derived type‑checker is sound by construction with respect to the
typing rules of the language.

If we extend our declarative semantics for constraints to states, we can state the
soundness criterion more concisely and uniformly. We accomplish this via an embed‑
ding of states into constraints:

Definition 1. The embedding of a graph 〈V, E, ρ〉 and the embedding of a state
〈
G | C

〉
are defined as follows:

J〈V, E, ρ〉K = (∗
s∈V
∇s 7→ ρ(s)

)
∗
(
∗

(s,l,s′)∈E

(
s l s′

))
q〈
G | C

〉y
= JGK ∗ (∗C

)
The soundness criterion can now be stated in terms of constraint equivalence between
initial and final states. Specifically, we will show that the following theorem holds:

Theorem 1 (Soundness of Statix‑core without queries). Let κ be either an accepting or
rejecting state. The operational semantics for Statix‑core without queries is sound:〈

ϵ | {C}
〉
→∗ κ implies C a` JκK

4.4 Solving Constraints 107

This is equivalent to the aforementioned informal definition of soundness, which
can be shown using the facts that top‑level constraints are closed and that graphs are
trivially a model for their own embedding. We would like to prove this statement
by induction on the trace of steps. This requires us to show that individual steps op‑
erate along constraint equivalences—i.e., that κ1 → κ2 implies Jκ1K a` Jκ2K. Indeed,
this is the case for many of the rules. For example, OP‑CONJ and OP‑EMP rewrite
along commutativity, associativity, and identity of the separating conjunction. The
rules for existential quantification and node assertion, however, cannot be justified
using logical equivalences. To this end we define a more general notion of preserving
satisfiability:

Definition 2. We write C1 |∼C2 to denote that C2 is satisfiable when C1 is satisfiable,
that is, the existence of a model G for open constraint C1, implies that G is also a
model for C2, but modulo graph equivalence (≈):

∀G1, φ1. (G1, φ1 ⊨ C1 implies (∃G2, φ2. G2, φ2 ⊨ C2 s.t. G1 ≈ G2))

C1 |∼C2

We also define the symmetric counterpart C1∼||∼C2 ≡ C1 |∼C2 ∧ C1∼| C2, which
denotes preservation of satisfiability. For top‑level (closed) constraints this notion
of preserving satisfiability coincides with constraint equivalence. Furthermore, con‑
straint entailment C1 ⊩ C2 always implies C1 |∼C2, allowing the use of laws such
as identity, commutativity, and associativity of the separating conjunction when we
reason about preservation of satisfiability. Steps in the operational semantics are se‑
mantically justified in that they preserve satisfiability of the constraint problem:

Lemma 1. Steps preserves satisfiability: κ1 → κ2 implies Jκ1K∼||∼ Jκ2K
This may feel counter‑intuitive, as steps construct a graph and preservation of satisfi‑
ability demands equivalent graphs as the model for the left‑ and right‑hand‑sides of
the step. The key to understanding this lies in Def. 1 of the state embedding together
with the rules for graph construction OP‑NODE‑TRUE and OP‑EDGE, which show that
bits of graph (support) are merely moved between the constraint program and the
(partial) model. In the initial state the entire model should be specified in the input
constraint and in the final state the entire model is a given.

Proof sketch. The proof is by case analysis on the constraint that is the focus of the
step. Many cases can indeed be proven using logical equivalences. Other cases, such
as the elimination of existential quantifiers rely on the commutativity of substitutions
with embedding of states. The graph equivalence is trivial everywhere, except for the
step OP‑NODE‑TRUE. An arbitrary fresh node is chosen there, which means that the
models for the different sides of the step are only equal up‑to renaming of nodes.

108 4 Knowing When to Ask

As a consequence of Lemma 1, the operational semantics enjoys soundness with
respect to the declarative semantics (Thm. 1).

Proof sketch of Thm. 1. The embeddings of the initial and final states reduce to C andJGK respectively. We repeatedly apply the fact that steps preserve satisfiability and
prove C∼||∼ JGK. Now we make use of the fact that graphs are trivially a supported
model for their own embedding: G ⊨ JGK. By the above constraint equivalence, G
must then also be a supported model for C up‑to renaming of nodes. The theorem
follows from the fact that constraint satisfaction is preserved by consistent renaming
of nodes in the model and the constraint, and the fact that node renaming vanishes
on top‑level constraints.

The operational semantics is non‑deterministic, but confluent. This can be shown
to hold by proving the diamond property for the reflexive closure of the step relation.
A sketch of the proof can be found in the Rouvoet, van Antwerpen, et al., 2020c,
Appendix A.

Theorem 2 (Confluence). If κ →∗ κ1 and κ →∗ κ2 then there exists κ′1 and κ′2 such that
κ1 →∗ κ′1 and κ2 →∗ κ′2 where κ′1 ≈ κ′2.

4.5 Solving Queries: Knowing When to Ask

We address the problem of extending the Statix‑core operational semantics to sup‑
port queries. First we improve our understanding of the problem, by considering a
naive semantics that answers queries unconditionally. We show that this approach
yields unsound name resolution by violating answer stability. A rule for queries
needs to ensure that query answers are stable. We develop the sound rule in three
steps: (1) We characterize the scope graph extensions that causes query answer in‑
stability (§4.5.1) and show that we can guarantee stability by ensuring the absence of
(weakly) critical edge extensions. (2) We describe a fragment of well‑formed constraint
programs for which it is feasible to check, without constraint solving, that certain
graph edges cannot exist in any future graph (§4.5.3), addressing the problem that
the complete scope graph is unknown during type checking. (3) We obtain an op‑
erational semantics for well‑formed Statix‑core constraints with queries by guarding
query simplification by the absence of weakly critical edges in all future graphs. We
prove that this guarded rule preserves satisfiability and thus yields a sound opera‑
tional semantics (§4.5.3, Thm. 5). In §4.6 we discuss case studies we conducted to test
the completeness of the operational semantics.

4.5 Solving Queries: Knowing When to Ask 109

4.5.1 Naive Query Answering

Consider a naive and unconditional rule for queries query s r D as z.C:

t = Ans
(
G, s r D

)
〈
G | query s r D as z.C; C

〉
→
〈
G | C

[
t/z
]

; C
〉 OP‑QUERY‑NAIVE

It solves them by answering the given reachability query in the incomplete graph
that is part of the solver state at that time. It then simplifies the constraint program
by substituting the answer set into C. This rule is unsound: it results in graphs that
are not models of the input constraint. Consider the following example:

C = ∇x 7→ ();∇y 7→ (); query x P+ > as z.
(
∀x′ in z.false

)
; x P y

The query in these constraints asks for any node that is reachable in the graph after
traversing at least one P‑labeled edge, starting in the node for the variable x. It then
asserts (via ∀x′ in z.false) that the answer to this query is empty. A complete trace
for this example is visualized in Fig. 4.9. Clearly, the final graph in Fig. 4.9 is not a
model for the input constraint. The answer to the query in the final graph is non‑
empty: there is a single path in the answer consisting of the only edge in the graph.
The reason for this faulty behavior can be reduced to two observations: (1) the naive
solver answers queries based on incomplete information, namely the partial graph
that happens to be part of its state at that point in the trace, and (2) query answers are
in general not stable under graph extensions that occur later in the constraint solver.
This raises the question: what additional conditions must hold in a given state such
that query solving is sound—i.e., under what side‑condition is the following rule for
query answering sound?〈

G | query s r D as z.C; C
〉
→
〈
G | C

[
Ans

(
G, s r D

)
/z
]

; C
〉

In order to prove that this rule is sound, it suffices to prove that it preserves satisfi‑
ability, as is the case for the other steps of the operational semantics (c.f. Lemma 1).
Concretely, to show that this rule preserves satisfiability, we have to prove:

JGK ∗ query s r D as z.C; C ∗
(∗C

)
∼||∼ JGK ∗ C

[
Ans

(
G, s1

r D
)

/z
]
∗
(∗C

)
This means that every supported model G ′ for the left constraint must be a supported
model for the right constraint as well, and vice versa. When is this the case? It holds
exactly when the query s r D is stable for the graph extension G v G ′. Or, in
the terms of the application domain of Statix, it holds if all relevant namebinding
information that may influence resolution of the specified name is present in G. That
means, for example, that no further names will be discovered in the remainder of the
program that shadow declarations that are reachable in the current graph G.

110 4 Knowing When to Ask

〈
ϵ, ∇x 7→ () ; ∇y 7→ () ; query x P+ > as z.

(
∀x′ in z.false

)
; x P y

〉
〈

s1 , ∇y 7→ () ; query s1
P+ > as z.

(
∀x′ in z.false

)
; s1

P y
〉

〈
s1 s2 , query s1

P+ > as z.
(
∀x′ in z.false

)
; s1

P s2

〉
〈

s1 s2 , s1
P s2

〉
〈

s1 s2P ,
〉

Figure 4.9: Trace demonstrating unsoundness of a naive query simplification rule.

4.5.2 Ensuring Answer Stability

In this section we untangle the definition of stability under graph extension and find
the root cause of instability: critical edges in a scope graph extension. To guarantee
query stability, we want to prevent that the solver extends the graph with critical
edges. We argue however that the absence of critical edges is too strong a notion for
a solver to verify. To remedy this, we derive the notion of a weakly critical edge which
only considers the extension boundary.

To appoint a root cause of instability of reachability queries under graph extensions
G v G ′, we focus on paths that exist in G ′, but not in G:

p ∈ Ans
(
G ′, s1

r D
)
\ Ans

(
G, s1

r D
)

Because the start node of every path in the answer set of a query is fixed (in this case
to s1) they can always be partitioned into a non‑empty prefix in G and the remainder.
The first edge of the remainder can be considered the root cause for this new path
in G ′. We call such edges critical:

Definition 3. An edge (s1, l, s2) ∈ EG ′ is called critical with respect to a graph ex‑
tension G v G ′ and a query s r D if there exist paths p1 and p2 that satisfy the
following conditions:

(a) G ` p1 : s
w1−→ s1 for some word w1,

(b) G ′ ` p2 : s2
w2−→ s3 for some node s3 and word w2,

(c) (p1 · l · p2) ∈ Ans
(
G ′, s1

r D
)

,
(d) and (s1, l, s2) /∈ EG .

Fig. 4.10 visualizes the critical edges for a particular graph extension and query. Crit‑
ical edges for a query are interesting because their absence in a graph extension guar‑
antees stability of the answer to that query:

Lemma 2 (Absence of Critical Edges). A reachability query s r D is stable under graph
extension G v G ′ iff G v G ′ contains no critical edges for s r D.

4.5 Solving Queries: Knowing When to Ask 111

Proof sketch. This absence of critical edges implies stability because every path that
answers a query that is in the extended graph G ′ but not in the original graph G can be
partitioned as p1 · l · p2 such that (tgt (p1) , l, src (p2)) is a critical edge. Consequently,
the absence of critical edges in an extension immediately implies that the extended
graph yields no new answers to the query under scrutiny. The other direction of this
lemma holds trivially.

s1

s2 s3
s4

s5 s6 7→ t

s7 7→ t

L M

M

M M

M

M ML

G1

G2

Critical

Weakly critical

Figure 4.10: (Weakly) critical
edges for the query s1

LM∗ D
(if t ∈ D).

As indicated by Lemma 2, it would be sufficient for
the rule for queries to require the absence of critical
edges in future graphs. The problematic question
however is: critical with respect to which graph ex‑
tension? Indeed, the graphs G ′ that Lemma 2 quan‑
tifies over are all future graphs of a trace in the opera‑
tional semantics. Precisely knowing G ′ is as difficult
as solving the constraint program. Hence it is not
feasible for a solver to guard against the absence of
critical edges with pinpoint accuracy. In the remain‑
der of this section we describe a two‑part approach to
sound operation of a non‑backtracking solver based
on over‑approximating the criticality of an edge.

Weakly critical edges Because the notion of criticality
is derived from entire new reaching paths in graph
extensions, guarding against critical edge extensions
requires looking ahead over arbitrary constraint solving. Our approximation, a
weakly critical edge, reduces the required lookahead to just one‑edge extensions of
the current graph:

Definition 4. An edge (s1, l, s2) is called weakly critical with respect to a graph G and
a query s r D if there exists a path p1 that satisfies the following conditions:

(a) G ` p1 : s
w1−→ s1 for some word w1,

(b) the word (w1l) is a prefix of some word in L(r),
(c) and (s1, l, s2) /∈ EG .

In Fig. 4.10 an edge is highlighted that is only weakly critical: it shares all the features
of a critical edge except that it does not actually give rise to new paths in the answer
set of the query. The intuition behind a weakly critical edge is that it may lead to
additional reaching paths. Every critical edge is also weakly critical, such that the
following corollary holds:

Corollary 1. A reachability query Q = s r D is stable under graph extension G1 v G2 if
the graph extension G1 v G2 contains no edges that are weakly critical for Q.

112 4 Knowing When to Ask

Proof sketch. Every critical edge is also weakly critical because

(p1 · l · p2) ∈ Ans
(
G ′, s1

r D
)

implies that (wl) is a prefix of some word in L(r), for w = labels (p1). The conclusion
then immediately follows from Lemma 2.

Because visibility is defined as the minimum of a reachability query answer
(§4.3.1), the absence of weakly critical edges is also a sufficient condition for stability
of visibility query answers.

Corollary 2 (Absence of Weakly Critical Edges). A visibility query Q = s r D is
stable under graph extension G1 v G2 if the graph extension G1 v G2 contains no edges that
are weakly critical for Q.

Consequently, the absence of weakly critical edges is also sufficient to guarantee
the soundness of visibility queries with any path order ≤p. However, for particular
choices of the path order there exist tractable approximations of criticality of edges
for stability of reachability that are more precise than weak criticality. For example,
the path ordering is often defined as the lexicographical extension of a precedence
ordering on edge labels. Edge extensions of the graph with lower precedence than
existing edges can in that case be disregarded as influential to name resolution. Our
results extend to such refinements in a straightforward manner.

4.5.3 Guarded Query Answering

By means of a well‑formedness judgment` C wf on Statix‑core constraints, we define
a large class of constraints for which we can check the absence of weakly critical
edges. To this end we will also define a predicate C 6↪→ (s, l) which can be checked
syntactically, but has the semantics that C does not support any l‑edges out of s if C
is well‑formed. We then prove the following guarded query simplification rule correct:

OP‑QUERY‑GUARDED
∀s2, l.

(
G ` p : s1

w−→ s2 and L(δwlr) 6= ∅ implies (C; C) 6↪→ (s2, l)
)

〈
G | query s1

r D as z.C; C
〉
→
〈
G | C

[
Ans

(
G, s1

r D
)

/z
]

; C
〉

Recall that the L(δwlr) 6= ∅ denotes that (wl) is a prefix of some word in L(r). In‑
tuitively, the precondition states that the remainder of the constraint program does
not support any weakly critical edges for the query under scrutiny.

4.5 Solving Queries: Knowing When to Ask 113

Well‑formed constraints. We define well‑formedness inductively using the rules in
Fig. 4.11. The intuition behind well‑formed constraints is that asserting new outgoing
edges on nodes requires permission to extend that scope. This judgment is defined
in terms of an auxiliary judgment ∆↓, ∆↑ ` C which denotes that the constraint C
requires permission for variables in ∆↓, and has permission for those in ∆↑.

Syntactical extends predicate. We also inductively define a syntactical judgment C ↪→
(s, l) in Fig. 4.11, denoting that C supports an edge (s, l, s′) for some s′. We write
C 6↪→ (s, l) to denote its negation. We lift both relations to work on constraint sets.
The key result is the following:

Lemma 3. For all well‑formed constraints the syntactical approximation of absence of sup‑
port implies the semantic counterpart. That is:

` C wf C 6↪→ (s, l) G, φ ⊨σ C s 6∈ σ

∀s′.
(
s, l, s′

)
6∈ σ

Proof sketch. We prove a stronger property, whose assumptions hold under the prem‑
ises of the lemma in question:

∆↓, ∆↑ ` C
(
∀(x ∈ ∆↓)⇒ (xφ 6= s)

)
C 6↪→ (s, l) G, φ ⊨σ C s /∈ σ

∀s′.
(
s, l, s′

)
/∈ σ

The proof itself is by induction on C. The interesting case to consider is edge asser‑
tions. In case the source of the edge is ground, the conclusion follows from inversion
of the third premise (s′ l′ t) 6↪→ (s, l). In case the source of the edge is represented
by a variable x, the first premise guarantees x ∈ ∆↓, such that the conclusion follows
by the second premise.

Equally important is the fact that ` C wf is preserved by steps. That allows it to
be checked only once on the input program without dynamically enforcing it on
intermediate constraint sets.

Theorem 3. Steps preserve well‑formedness of constraints:(〈
G | C1

〉
→
〈
G ′ | C2

〉
and ` C1 wf

)
imply ` C2 wf

Using the fact that absence of weakly critical edges is sufficient for stability (Lemma 1),
and the fact that the absence of weakly critical edges can be ensured for well‑formed
constraints (Lemma 3), we prove that the guarded simplification rule preserves sat‑
isfiability of the constraint problem:

114 4 Knowing When to Ask

` C wf Constraint program C has sufficient permissions

∆↓, ∆↑ ` C ∆↓ ⊆ ∆↑

` C wf
WF‑PROGRAM

∆↓, ∆↑ ` C C requires permissions for names in ∆↓ and provides them for ∆↑

WF‑TRUE

∅, ∅ ` emp

WF‑FALSE

∅, ∅ ` false

WF‑CONJ
∆↓1 , ∆↑1 ` C1 ∆↓2 , ∆↑2 ` C2

∆↓1 ∪ ∆↓2 , ∆↑1 ∪ ∆↑2 ` C1 ∗ C2

WF‑EQ

∅, ∅ ` t1 = t2

WF‑EXISTS
∆↓, ∆↑ ` C

(
x ∈ ∆↓ ⇒ x ∈ ∆↑

)
∆↓ \ {x}, ∆↑ \ {x} ` ∃x.C

WF‑SINGLETON

∅, ∅ ` single(t, t)

WF‑NODE‑VAR

∅, {x} ` ∇x 7→ t

WF‑NODE‑NOVAR
t is not a variable
∅, ∅ ` ∇t 7→ t′

WF‑FORALL
∆↓, ∆↑ ` C

(
x ∈ ∆↓ ⇒ x ∈ ∆↑

)
∆↓ \ ∆↑ \ {x}, ∅ ` ∀x in t.C

WF‑EDGE‑VAR

{x} , ∅ ` x l t′

WF‑EDGE‑NOVAR
t is not a variable

∅, ∅ ` t l t′

WF‑QUERY
∆↓, ∆↑ ` C

∆↓, ∆↑ ` query s r D as z.C

WF‑DATA

∅, ∅ ` dataOf(t, t′)

C ↪→ (s, l) Constraint program C asserts an l‑edge on node s

EXT‑CONJ₁
C1 ↪→ (s, l)

(C1 ∗ C2) ↪→ (s, l)

EXT‑CONJ₂
C2 ↪→ (s, l)

(C1 ∗ C2) ↪→ (s, l)

EXT‑EXIST
C ↪→ (s, l)

(∃x.C) ↪→ (s, l)

EXT‑EDGE

(s l t) ↪→ (s, l)

EXT‑FORALL
C ↪→ (s, l)

(∀t in z.C) ↪→ (s, l)

EXT‑QUERY
C ↪→ (s, l)

(query t r D as z.C) ↪→ (s, l)

Figure 4.11: Well‑formed constraints and syntax directed edge support predicate.

4.5 Solving Queries: Knowing When to Ask 115

Theorem 4. The guarded simplification step preserves satisfiability:(
∀s2, l.G ` p : s1

w−→ s2 and L(δwlr) 6= ∅ imply (C; C) 6↪→ (s2, l)
)

JGK ∗ query s1
r D as z.C ∗

(∗C
)
∼||∼ JGK ∗ C

[
Ans

(
G, s1

r D
)

/z
]
∗
(∗C

)
Proof sketch. We prove this equivalence in the direction right to left. The other direc‑
tion proceeds similarly. The hypothesis states that there is a graph G ′, which is a
supported model for the right hand side of the above equivalence:

G ′, φ ⊨ JGK ∗ C
[
Ans

(
G, s1

r D
)

/z
]
∗
(∗C

)
(I)

We prove that the substituted answer to the query is stable for the extension G v G ′.
The conjunction distributes support in disjoint fashion over the operands, and the
embedding of G requires support for all of its nodes and edges. Consequently:

G ′, φ ⊨〈SG′\SG ,EG′\EG〉 C
[
Ans

(
G, s1

r D
)

/z
]
∗
(∗C

)
(II)

Now assume a weakly critical edge (s2, l, s3). By definition we must have that G `
p : s1

w−→ s2 and L(δwlr) 6= ∅. From the guard of the query simplification rule
we may conclude (C; C) 6↪→ (s2, l). This relation is preserved under the answer set
substitution into the constraint C. Lemma 3 now ensures that the remainder of the
constraint program cannot support the weakly critical edge:

∀s3.(s2, l, s3) /∈ (EG ′ \ EG)

It follows by Lemma 1 that the answer set is stable for this graph extension:

Ans
(
G, s1

r D
)
= Ans

(
G ′, s1

r D
)

(III)

Combining (I) and (III), we have:

G ′, φ ⊨ JGK ∗ C
[
Ans

(
G ′, s1

r D
)

/z
]
∗
(∗C

)
The desired result follows from query‑introduction in the middle operand.

We have proven that all steps in the extended operational semantics preserve satisfi‑
ability. Soundness follows:

Theorem5 (Soundness of Statix‑Core with Queries). If the operational semantics accepts
a closed and well‑formed constraint C, i.e.

〈
ϵ | {C}

〉
→∗

〈
G | ∅

〉
, then the resulting

graph is a supported model for that constraint: G ⊨ C. If C is rejected, then no supported
model exists.

116 4 Knowing When to Ask

Proof sketch. The proof is the same as the proof for soundness of the fragment without
queries, using Thm. 4 to prove that the additional step in the operational semantics
also preserves satisfiability.

We end our discussion of the extended operational semantics by observing that
it is still confluent. The interesting critical pair reduces a query in the left step and
an edge asserting in the right step. The diamond is formed using the fact that the
premise of the query step ensures that the asserted edge cannot be critical for the
query Rouvoet, van Antwerpen, et al., 2020c, Appendix A.

4.6 Implementation and Case Studies

We developed the operational semantics of Statix‑core and have proven that the oper‑
ational semantics computes sound name resolution results for well‑formed specifica‑
tions. However, the well‑formedness restriction and the possibility that the schedul‑
ing gets stuck limits the expressiveness of Statix‑core. In this section we describe an
evaluation of our approach using MiniStatix: a prototype implementation of Statix
that closely follows the operational semantics.

MiniStatix implements the core constraint language Statix‑core, as well as (mu‑
tually) recursive predicates and (guarded) pattern matching, in approximately 3000
lines of Haskell. The language has a simple module system to enable the larger case
study language specifications to be organized across files. After parsing, the specifi‑
cation is statically checked: names are statically resolved, after which permissions are
inferred for constraints, deriving the relation formally stated in Fig. 4.11. The imple‑
mentation extends the definition of permissions and well‑formedness to predicates
and pattern matching.

The solver implementation is a variation of the small‑step operational semantics
that uses environments rather than substitution. It uses a round‑robin, delaying
scheduler for constraints, which can detect configurations where no more progress
can be made (i.e., stuckness). For satisfied constraints, the solver outputs a complete
scope graph and the unifier for the top‑level existential quantifier if there is any. For
rejected programs, the solver will give the trace of instantiated predicates that led to
falsification, which functions as a formal explanation of the error. Stuck configura‑
tions are output for specification debugging purposes.

We have evaluated our approach using MiniStatix on three case studies by imple‑
menting a subset of name resolution for Java and Scala, and the whole of LMR (van
Antwerpen et al., 2016): a toy language with modules and records. The former two
show that our approach can indeed resolve challenging patterns of real languages.
By targeting subsets of real languages, we are able to directly test our approach
against the Java and Scala type checker. The test succeeds if MiniStatix and the refer‑
ence type checker agree on whether a test program is valid. Programs that should be

4.6 Implementation and Case Studies 117

Table 4.1: Evaluation: test results.

Language LOC Spec Tests Succeed Fail Stuck

Java 1201 125 125 0 0
Scala 517 109 109 0 0
LMR 263 19 15 0 4

Total 1976 253 249 0 4

rejected are equipped with specific error expectations to avoid false positives. The
third case study (LMR) is used to explain when our approach is incomplete, caus‑
ing stuck configurations in MiniStatix. We count a test case as a success if it does not
get stuck and meets the manually set test expectation (because LMR has no reference
type checker). The results are summarized in Table 4.1 and we briefly highlight some
parts of the case studies below.

The implementation of MiniStatix, the language specifications and tests are avail‑
able as an artifact accompanying this paper (Rouvoet, van Antwerpen, et al., 2020b).

The Java study We selected a subset of Java with a focus on the binding aspects of
packages, imports, classes, interfaces, inheritance, inner classes, and method and
field members. Test cases are set up so that faulty name resolutions result in type
errors and focus on interesting edge cases. The tests come in pairs that test that good
programs are accepted and ill‑typed variants are rejected.

Packages in Java are an interesting test subject because at first sight they seem to
require remote extension—i.e. the very pattern that is forbidden by our well‑formed‑
ness restriction. Package names in Java have no authoritative declaration, but exist
by virtue of use. More than one compilation unit can declare to define members in
the same package. The well‑formedness restriction indeed does not permit modeling
this by resolving the package name at the top of a compilation unit to obtain a pack‑
age scope and contributing definitions to that scope. This would constitute remote
extension of the package scope. However, the right binding semantics can also be
modeled via a mixin‑pattern: compilation units query for all other compilation units
in the same package and make their types accessible by adding import edges. This
model makes it locally very apparent what things are in scope of the compilation
unit, and also passes the well‑formedness check so that stability of query answers
can be guaranteed.

The Scala study The focus of the Scala case study is resolution of names to local def‑
initions and imports. Scala not only gives different precedence levels to local defini‑
tions, wildcard, and specific imports, but also distinguishes their scope. Concretely,
local definitions are accessible in the surrounding scope to accommodate mutual def‑
initions, whereas imported names are only accessible in subsequent scope. This en‑

118 4 Knowing When to Ask

object c {
import a._;
def g(): Unit = {

val x: Int = h();
import b.h;

};
def h(): Int = 42;

};
object a {
object b {

def h(): Unit = {};
};

};

(a) Scala’s scoping.

pub mod foo {
pub mod bar {}

}

pub mod test {
use super::*;
use bar::*;
use foo::*;

}

(b) Well‑typed Rust example.

pub mod foo {
pub mod foo {}

}

pub mod test {
use super::*;
use foo::*;

}

(c) Ambiguous Rust example.

Figure 4.12: Example programs from the case studies.

sures that resolving import statements cannot influence their own resolution. This
simplifies scheduling because it avoids the need to iterate name resolution within a
block. We discuss iterated name resolution (which Rust and LMR require) in more
detail below.

The well‑typed example test case in Fig. 4.12a highlights the scoping difference be‑
tween declarations and imports, and also shows specific imports, wildcard imports,
and imports from imported objects. The forward reference to the locally defined
object a is well bound, whereas the imported definition of h cannot be forward ref‑
erenced. In addition to the shown features, our Scala subset supports hiding and
renaming in imports.

The LMR/Rust study As a third study we looked at a language that has imports that
can affect their own resolution. (An extended version of the following discussion
can be found in Rouvoet, van Antwerpen, et al., 2020c, Appendix C). Although this
does not appear to be a common language feature, at least Rust does implement
this import semantics. The difficulty arises because LMR and Rust combine features
that are not usually found together in other module systems: 1. relative imports,
2. unordered imports, and 3. glob imports. The combination of these features make
programs as depicted in Fig. 4.12b well‑typed. In contrast, Scala has imports that
resolve relative to the local scope, but they only open in subsequent scope—i.e., they
are ordered. The direct Scala equivalent of the given example would therefore not be
able to resolve the name bar. Example Fig. 4.12c shows how this can lead to strange
name resolution situations where imports are self‑influencing. The Rust type checker

4.7 Related Work 119

judges this program to be ambiguous: imports do not shadow outer declarations, so
that two declarations of foo are visible in the block of module test.

The Rust type checker uses iterated name resolution to implement the desired
behavior, re‑resolving module names until the environment stabilizes. MiniStatix
on the other hand gets stuck on Rust/LMR programs with imports—i.e., also non‑
ambiguous programs. The import is specified using a query and an import edge
assertion. However, the query is delayed on the weakly critical edge assertion that
in turn is waiting on the query to resolve the target scope of the edge.

The difference between Scala’s and Rust’s imports exactly exposes the limits of
our particular over‑approximation of dependencies using weakly critical edges: it
may lead to the operational semantics being stuck on programs that in principle have
a stable model. Rust shows that a sound fixed point algorithm exists for name res‑
olution in Rust programs. How to systematically derive such an algorithm from
high‑level declarative specifications is a different question. From a declarative speci‑
fication of self‑influencing imports some paradoxes can arise. It is worth pondering
what should be the meaning of Fig. 4.12c if imports do shadow outer declarations.

4.7 Related Work

The main novelties of the Statix specification language compared to typical typing
rules are the assertions of scope graph structure, and the queries over the resulting
graph. The fact that scopes are passed by reference enables the high‑level specifica‑
tion of name binding in two ways. First, it makes it possible to separate the assertion
that a scope exists from the description of its contents. This is useful because scope
is naturally a concept that extends over larger parts of syntax, whereas typing rules
are usually given by induction over the syntax. Second, it makes retrieving binding
information about remote parts of the AST lightweight because it is accessible via
scope references. This makes it unnecessary to propagate and construct complicated
environments in typing rules.

At the same time, these features present a challenge operationally. In order to
maintain soundness with respect to the declarative semantics, queries need to be
delayed until all contributions to the relevant scopes have been witnessed. This paper
addresses that challenge. In this section, we want to relate to and compare with other
approaches to operationalizing declarative specifications of static semantics.

4.7.1 Constraint Generation and Solving

Statix is a constraint language in the tradition of Constraint Handling Rules (CHR;
T. W. Frühwirth, 1998). CHR has a sound semantics of fact assertion and retraction.
Fact assertion and retraction are considered impure primitives in Prolog (Moss, 1986).
Where CHR uses the constraint store to record assertions, Statix uses the scope graph.

120 4 Knowing When to Ask

Unlike constraint store facts, scope graph facts are only asserted and never retracted.
The context‑sensitive effects that can be achieved using multi‑head propagation and
simpagation rules in CHR can be realized using scope graph constraints in Statix.

The approach of CHR and Statix is distinctly different from approaches that sepa‑
rate the constraint generation and constraint solving phases in the tradition of Hind‑
ley‑Milner type‑inference (Odersky et al., 1999; Pottier and Rémy, 2005). The con‑
straint‑generation based formalism that is closest to Statix is its precursor NaBL2 (van
Antwerpen et al., 2016). Like Statix, it has built‑in support for name resolution using
scope graphs (Néron et al., 2015), but separates constraint generation from constraint
solving.

NaBL2 supports type‑dependent name resolution, in which the resolution of a
name (such as the method name in e.m()) depends on the resolution of a type (for
the receiver expression e), which in turn may depend on name resolution. It has to
deal with the fact that sometimes not all binding information is available when a
name is resolved. The incomplete information is represented explicitly in the model
using an incomplete scope graph, where unification variables can be placeholders for
scopes. During constraint solving, such unification variables must be unified before
they can be traversed as part of queries. The solver guarantees query stability by
relying on a resolution algorithm that delays when resolution encounters an edge to
a unification variable.

Unlike in Statix, scope graphs in NaBL2 can only be incomplete in the sense that
the target of an edge is yet unknown. Edges cannot be missing entirely. This pro‑
hibits specifications where the presence of edges is dependent on resolution in the
scope graph. In Statix this is permitted and used (van Antwerpen et al., 2018). For
example, imports‑with‑hiding in our Scala case study is specified using a query that
finds all members of an object scope and a new scope that is a masked version of the
object scope. The number of edges of the masked scope depends on query resolution.

4.7.2 On-demand Evaluation of Canonical Attribute Grammars

Another way to operationalize a type system is to use an attribute grammar (AG), using
equations on AST nodes to define the values of attributes. Attributes are either inher‑
ited (i.e., computed by the parent and propagated down the AST), or synthesized
(i.e., computed on the node itself and propagated upwards). Name resolution can be
specified using AGs by taking environment‑based typing rules such as in Fig. 4.2b
and turning the downwards and upwards propagating environments into inherited
and synthesized attributes respectively.

Canonical attribute grammars were implemented by statically computing a sched‑
ule (or plan) consisting of multiple passes over the AST, ordered such that the input
values of the attribute computations in one pass are computed in a previous pass (for
a survey, see Alblas, 1991). Expressivity of canonical attribute grammars is limited

4.7 Related Work 121

by this stratified evaluation. By building on the circular programming techniques
of Bird (1984), Johnsson (1987) shows how dependencies between attributes can be
determined dynamically, relaxing the non‑circularity requirements on specifications.
Modern attribute grammar formalisms like JastAdd (Ekman and Hedin, 2006, 2007a)
and Silver (Van Wyk et al., 2010) use these techniques, relying mostly on on‑demand
computation.

The specification problems that we describe in §4.2 with environment‑based rules
also affect canonical attribute grammars (AG). In particular, to gain access to bind‑
ing information from somewhere else in the tree, this information needs to be aggre‑
gated and distributed through the least common ancestor (J. T. Boyland, 2005). This
leads to more complex, non‑modular grammars for languages with complex bind‑
ing rules (Hedin, 2000). This specification problem is the motivation for Reference
Attribute Grammars (RAGs), which we discuss separately below.

J. T. Boyland (2005) also describes how canonical AGs suffer from an implemen‑
tation problem: packaging multiple values into environment attributes requires that
they can be computed at the same time. Sometimes this causes circular dependencies
that disappear when values are split across multiple environments. This means that
the specification writer has to be aware of the operational semantics. J. T. Boyland
(2005) concludes: “The decision of whether two values can be packaged together
(thus reducing complexity and increasing efficiency) relies on global scheduling in‑
formation, and thus should be left to an implementation tool, not the description
writer.” This motivates the development of Remote Attribute Grammars. The same
problem also motivated the design of Statix.

4.7.3 Scheduling of Reference Attribute Grammars with Collection Attributes

Reference attributes (Hedin, 2000) are an extension of canonical AGs that allow at‑
tributes that reference AST nodes. Attributes of the referenced AST nodes can be read
directly. This can be used to avoid the need to propagate information using environ‑
ments, and thus avoids some of the problems with the specification and the imple‑
mentation of static semantics using environments that we described in §4.2. Refer‑
ence attributes can be used to superimpose graphs on an AST.

By themselves, reference attributes do not solve the problems with the aggrega‑
tion of binding described in §4.2. To additionally avoid the specification overhead
of aggregating values from an AST, they can be combined with parameterized at‑
tributes or collection attributes (J. Boyland, 1996).

Parameterized attributes are used for example to define name resolution for large
subsets of Java in the JastAdd AG system (Ekman and Hedin, 2007a,b). This is ac‑
complished by defining a parameterized lookup attributes on nodes that implement
the name resolution policy. These attributes are invoked on references, passing the
name to be resolved. Shadowing can be implemented by deferring to the lookup

122 4 Knowing When to Ask

of child and parent nodes in a particular order. The effective resolution policy for
the resolution of a variable is thus determined by the combination of all local poli‑
cies implemented in the nodes that are traversed. This differs significantly from Sta‑
tix specifications, where the resolution policy is determined more uniformly by the
query parameters in the variable rule. The separation queries from scope graph con‑
struction in Statix is designed to make it easy to extract an abstract model of binding.
Parameterized attributes are evaluated on‑demand.

Collection attributes collect contributions that can come from different contributor
nodes throughout the AST. A contributor uses a reference attribute to specify to
which collection it contributes. The mutual binding example in Fig. 4.2a can be spec‑
ified using reference and collection attributes. A block defines a collection attribute
that collects the binding contributions from its immediate children. To that end the
children need a reference to the block, which can be specified as an inherited attribute.
We are not aware of any case studies involving non‑lexical static binding that make
use of collection attributes for name resolution.

There are two approaches to evaluating AGs with collection attributes. The first
approach is due to Magnusson et al. (2009). Before a collection is read, all contribu‑
tions must have been computed. To be able to determine if this is the case, a pass
is made over the AST and for all contributions to any instance of the collection at‑
tribute, the reference that is contributed to it is evaluated. Like in Statix, this is an
over‑approximation of dependencies. After this, all contributions are evaluated for
the one reference whose collection is being read. Because of the first pass, the refer‑
ence attribute can never depend on any instance of the collection attribute, or a cycle
would occur (Magnusson et al., 2009). This can cause evaluation to get stuck even
when sound schedules exist.

The specification of contributions differs from the specification of edges in Statix,
in that edge assertions can occur anywhere in a specification on any scope reference.
In a Statix specification that does not enforce our permission‑to‑extend restriction,
it is not possible to demand the evaluation of the scope reference that the edge is
‘contributed to’. This is the case because the scope reference can be determined by
arbitrary constraints, which can be blocked. On the other hand, if permission‑to‑
extend is enforced, then it is unnecessary to evaluate all scope references that are
contributed to. This is the case because a scope that is not yet ground cannot be
instantiated to any already existing scope—hence (x l t) 6↪→ (s, l) is sound.

A Statix specification has no immediate counterpart as a RAG. An obstacle is that
Statix rules do not clearly distinguish inputs and outputs, which is part of their declar‑
ative appeal. It also potentially enables them to be used to solve other language
implementation problems that involve the static semantics, such as suggesting well‑
typed program completions (Daniel A. A. Pelsmaeker et al., 2019). Attribute gram‑
mars on the other hand organize specifications into equations for attributes, which

4.8 Conclusion 123

have a clear direction. A benefit of this approach is that dependencies are more explic‑
itly present in the specification (even for equations that specify contributions to col‑
lection attributes), so that on‑demand evaluation is available. Encoding Statix rules
into AG equations requires a factorization into attributes. Whether this is always
possible is an interesting open research problem.

4.8 Conclusion

We envision closing the gap between language specification and language implemen‑
tation by using specification languages that can address the complexity of actual pro‑
gramming languages and systematically deriving implementations from specifica‑
tions. Importantly, this moves the question of implementation correctness from the
concrete language to the specification language. This approach leads to correct‑by‑
construction language implementations and higher‑level specifications that abstract
from operational concerns.

In this paper, we tackled one aspect of that challenge. Critical edges represent
language independent insight into a scheduling problem that type checker imple‑
mentations need to address. Because it is a high‑level concept, it can be used to think
about language design. We exploit this insight and obtain sound‑by‑construction
scheduling in type checkers derived from specifications.

Interesting future research topics are the declarative specification of dependently
typed languages, and type inference beyond what is covered by Statix’s support for
unification. It would also be interesting to investigate support for user‑defined fixed
point properties (Magnusson and Hedin, 2003; Sasaki and Sassa, 2003), enabling the
specification of data‑flow analyses in Statix.

Acknowledgments We thank Andrew Tolmach and Reuben Rowe for the many dis‑
cussions on scope graphs and constraint semantics and resolution. We also thank
the anonymous reviewers of this paper and its prior submissions for their feedback
and valuable suggestions. This research was funded by the NWO VICI Language De‑
signer’s Workbench project (NWO 639.023.206), the NWO VENI Verified Program‑
ming Language Interaction project (NWO 016.Veni.192.259), and the NWO VENI
Composable and Safe‑by‑Construction Programming Language Definitions project
(NWO VI.Veni.192.259).

5Scope States

Abstract Compilers that can type check compilation units in parallel can make more effi‑
cient use of multi‑core architectures, which are nowadays widespread. Developing parallel
type checker implementations is complicated by the need to handle concurrency and synchro‑
nization of parallel compilation units. Dependencies between compilation units are induced
by name resolution, and a parallel type checker needs to ensure that units have defined all
relevant names before other units do a lookup. Mutually recursive references and implicitly
discovered dependencies between compilation units preclude determining a static compila‑
tion order for many programming languages.

In this paper, we present a new framework for implementing hierarchical type checkers
that provides implicit parallel execution in the presence of dynamic and mutual dependencies
between compilation units. The resulting type checkers can be written without explicit han‑
dling of communication or synchronization between different compilation units. We achieve
this by providing type checkers with an API for name resolution based on scope graphs, a lan‑
guage‑independent formalism that supports a wide range of binding patterns. We introduce
the notion of scope state to ensure safe name resolution. Scope state tracks the completeness of
a scope, and is used to decide whether a scope graph query between compilation units must
be delayed. Our framework is implemented in Java using the actor paradigm. We evaluated
our approach by parallelizing the solver for Statix, a meta‑language for type checkers based
on scope graphs, using our framework. This parallelizes every Statix‑based type checker, pro‑
vided its specification follows a split declaration‑type style. Benchmarks show that the ap‑
proach results in speedups for the parallel Statix solver of up to 5.0x on 8 cores for real‑world
code bases.

5.1 Introduction

Despite the general availability of multi‑core architectures, many compilers do not
take advantage of these for type checking. Parallelizing a compiler remains a chal‑
lenging task, which requires dealing with explicit synchronization and communica‑
tion between compilation units. For example, the authors of GCC made the following
remark about their efforts to parallelize parts of the compiler (GCC, n.d.):

“One of the most tedious parts of the job was […] making several global variables
threadsafe, and they were the cause of most crashes in this project.”

Published as Hendrik van Antwerpen and Eelco Visser (2021). “Scope States: Guarding Safety of
Name Resolution in Parallel Type Checkers.” In: 35th European Conference on Object‑Oriented Programming
(ECOOP 2021). Dagstuhl, Germany. DOI: 10.4230/LIPIcs.ECOOP.2021.1. Copyright © 2021 Hendrik van
Antwerpen and Eelco Visser. Licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.4230/LIPIcs.ECOOP.2021.1

126 5 Scope States

They continue to say that even with the help of specialized tools it remained difficult
to do the parallelization correctly. Compilers for many major languages do not sup‑
port parallel front ends, or only experimentally. Some build tools allow the compiler
to be run in parallel, but many require a static compilation order, and because they
have no internal knowledge of the language being compiled, cannot generically han‑
dle cyclic dependencies between compilation units. A generic, reusable solution to
the problem of how to implement type checkers that can process compilation units in
parallel, which correctly deals with (potentially cyclic) dependencies between units,
is missing1.

Dependencies between compilation units are the results of name lookup from one
unit into another. A correct concurrent type checker must ensure that when a lookup
is done, all relevant units have progressed enough to provide a complete answer. For
languages that support true separate compilation (e.g., Shao and Appel, 1993), there
are no lookups into other units, and processing them in parallel is trivial. It may also
be possible to run type checkers in parallel using a compilation order based on static
or dynamic dependencies, which ensures units are compiled after their dependen‑
cies. But many programming languages have features, such as mutually recursive
modules, that result in mutual dependencies between compilation units. When com‑
pilation units are mutually dependent, neither unit can be completed before the other
is at least partially checked. A more fine‑grained approach than processing compila‑
tion units in a fixed order is required.

This paper presents a new framework for the implementation of type checkers
that provides implicit parallel execution. Type checkers are organized as a hierarchy
of compilation units, which allows modeling simple scenarios such as flat files in a
project, as well as package hierarchies. The framework supports dynamic dependencies
andmutual dependencies between compilation units. The type checkers can be written
without the need to explicitly handle communication or synchronization between
units.

This is achieved by providing type checkers with an API for name resolution
based on scope graphs. Scope graphs are a language‑independent formalism for
name binding and name resolution, which has been shown to support a wide range
of binding patterns, and has successfully been applied to implement type check‑
ers (Néron et al., 2015; Rouvoet, van Antwerpen, et al., 2020a; van Antwerpen et
al., 2018). The key to our approach is twofold:

• delay lookups when other units have not progressed enough to give a safe, that
is, complete answer, and

• release delayed queries as soon as possible, even if other parts of the graph are
still incomplete.

1The type checkers we envision are both concurrent (i.e., units make (interleaved) progress during the
same period) and parallel (i.e., units run at the same time), and we use the terms interchangeably.

5.1 Introduction 127

Recent work by Rouvoet, van Antwerpen, et al. (2020a) identifies the absence of
weakly critical edges as a sufficient condition to guarantee safe name resolution in a
partial scope graph. We develop the notion of scope state to allow fine‑grained track‑
ing of the presence or absence of weakly critical edges. Through these scope states,
which are managed by the type checkers via the name resolution API, the framework
ensures safety of name resolution. The provided API is asynchronous, which works
with type checkers that follow a synchronous pattern, where every name resolution
query is awaited, as well as with type checkers that use dynamic scheduling tech‑
niques, such as worklists and continuations.

We claim the following contributions:

• We propose the notion of scope state to explicitly track the presence of weakly‑
critical edges (Section 5.3.3).

• We introduce a model of hierarchical compilation units with scope sharing (Sec‑
tion 5.4.1). We extend scope state with a notion of sharing, which allows us to
track weakly‑critical edges in the hierarchy of compilation units (Section 5.4.2).

• We present a scope graph‑based name resolution API for use by type checker
implementations (Section 5.4.3).

• We present an actor‑based algorithm that implements the hierarchical compi‑
lation unit model and the name resolution API, and provides implicit parallel
execution of the compilation units (Section 5.5).

• We present a fine‑grained deadlock handling approach to ensure termination
that is well‑suited for interactive applications of the type checkers (Section 5.5).

• We show that our framework captures the scheduling behavior of Rouvoet,
van Antwerpen, et al. (2020a) by porting the Statix solver to our framework.
We discuss local inference and the need for a specification style that models
declarations and their types as separate scopes (Section 5.6). We parallelize all
Statix type checkers, provided they follow this specification style.

• We benchmark the parallel Statix solver using a specification for a subset of
Java on a few real world projects, showing speedups up to 5.0x on 8 cores for
larger projects.

All the source code and benchmark results are available in the accompanying
artifact.

128 5 Scope States

package p;

class A {
p.C f;
static class C {}

}

package p;

class B extends A {
C g;

}

package p;

class C {
A h;

}

Figure 5.1: Three unit Java program demonstrating mutual and discovered dependencies.

5.2 Motivation and Scope

Our goal is to develop a framework that provides implicit parallelization of type
checkers. In this section we discuss the features we want to support, the difficulties
these features pose to parallelization, and an overview of our solution.

We use an example of a Java program consisting of three compilation units, shown
in Figure 5.1, to illustrate the requirements on parallel type checkers. This example
shows to two dependency patterns that are challenging for parallelization. The first
is mutual dependencies. Class A refers to class p.C (qualified to distinguish it from the
nested class it defines), while class C refers to class A. The second is dynamic dependen‑
cies. These are dependencies that are discovered during type checking, and that are
not obvious without at least partially checking the program. The reference from B
to C is an example of this. The name C could refer to the top‑level class in the package,
or to the nested class in A. To decide that it refers to the nested class in A, we need to
resolve the reference to the super class A and its interface.

Typical compiler design (e.g., Appel, 1998) divides compilation into phases, in‑
cluding parsing, type checking, and code generation. We focus on the type checking
phase, which is often difficult to parallelize because of the context dependence of
type checking and name resolution. The type checking phase of the compiler for our
example may consist of several steps: (a) build a symbol table containing informa‑
tion on defined classes and type inheritance, (b) build the interface for each class by
processing field and method declarations, and (c) check the field and method bodies
of each class. Each step depends on the information collected in the previous phases.

What does it take to parallelize this type checker? Compilation units are checked
in parallel, but inevitably need information provided by other compilation units. Mu‑
tual dependencies between compilation units prevents linear ordering of compila‑
tion units, while dynamic dependencies mean part of the work must be done before
all dependencies are even known. This immediately rules out simple paralleliza‑
tion schemes based on a topological ordering of compilation units, where units are
checked after their dependencies have finished.

The main challenge introduced by parallelization is therefore how to deal with
partial information during type checking (which has been called the Doesn’t Know

5.3 Type Checking with Scope Graphs 129

Yet Problem; Seshadri et al., 1988). For example, the compilation unit for class B does
a lookup of nested classes in its super class A, while the compilation unit for A has
not constructed its interface yet. Solving this problem may require designing locking
schemes for threads with shared data, or messaging protocols for communicating
processes, as well as keeping track of the completeness of (part of) the symbol table
or interface. Designing concurrent software is notoriously hard, and bugs can result
in deadlocks or invalid results because of the use of incomplete information.

Our solution to this problem is a framework that allows compiler engineers to
write their type checker without concern for parallelization. All the work of coordi‑
nating the parallel units and keeping track of completeness of interfaces is handled
by the framework. The key idea is that all dependencies between units are the result
of either a hierarchy between units (e.g., compilation units in packages) or name2

lookups. The framework provides the type checker with a name handling API based
on the expressive name binding model of scope graphs. Scope graphs are language‑
independent, and have been successfully used to model a wide variety of binding
patterns, including mutually recursive modules, type‑dependent names, and gener‑
ics. Type checkers use this API to declare the name binding and scoping structure,
and resolve names by queries on the resulting scope graph. The scope graphs grows
monotonically with the type checker marking the parts of the graph that are com‑
pleted. In return, the framework completely hides the communication between dif‑
ferent compilation units and ensures only complete information is used to answer
name resolution queries.

In terms of our earlier example, this means that the type checker of each com‑
pilation unit follows the steps of the original, non‑parallel, design. When the type
checker for class B queries the not‑yet‑constructed interface of class A, the query is
simply suspended until the unit of A has progressed enough to be able to answer the
query. The type checker of unit of A, on the other hand, is unaware of the query as
the delay and answer mechanism is handled transparently based on the monotone
completion of A’s scope graph.

5.3 Type Checking with Scope Graphs

Scope graphs (Néron et al., 2015) are a language‑independent formalism to specify
name binding and name resolution, and a key ingredient of our approach. In this
section we explain scope graphs, describe the problem of safe name resolution and
its solution using critical edges (Rouvoet, van Antwerpen, et al., 2020a), and we in‑
troduce the notion of scope state to track the presence of critical edges.

2We use name in a broad sense, as it can be complex data and does not necessarily have to appear
literally in the original program.

130 5 Scope States

5.3.1 Scope Graphs

Scope graphs describe the name binding structure of programs as a directed graph
of scopes with associated data, connected by labeled edges. Scopes correspond to
regions in the program that behave uniformly with respect to name binding. Name
resolution corresponds to queries in the graph that find paths from references to
scopes with matching associated data (e.g., an identifier name).

The program in Figure 5.2 will be our running example. It consists of two files,
one containing a class A in a package p, and a class B in a package q. Class B extends
class A and refers to a field f in A from the method m. The scope graph correspond‑
ing to our example is shown in Figure 5.3.3 The node labeled sR represents the root
scope of the program. The scopes sp, sq, sA, sB, s f , and sm correspond to declarations
in the program, and each has the simple class name as associated data, depicted as
s→ x. Edges from the containing scopes to these declarations are labeled to indicate
the kind of declaration: PKG, CLS, FLD and MTHD for package, class, field, and method
declarations respectively. The scopes sT(f) and sT(m) represent the types of the dec‑
larations f and m, and each is connected to their declaration with a TYPE‑labeled edge.
The label LEX is used for connecting a scope to its lexical parent.4 Finally, class exten‑
sion is modeled by an EXT‑labeled edge between the two class scopes, which makes
the declarations from the super‑class reachable from the subclass.

Name resolution is expressed by means of queries over the scope graph, finding
a path from a reference’s scope to a matching declaration. Query parameters con‑
trol reachability and disambiguation. What data in the graph is reachable is specified
with a regular expression describing valid paths and a predicate describing match‑
ing data. For example, to resolve a reference f in the lexical context or in a super‑
class, one would use the regular expression LEX∗EXT∗FLD, and a predicate matching
the name f. Disambiguation determines which data is visible if multiple reachable
results are found, and is specified with an order on edge labels and a predicate de‑
scribing equivalent data. For example, if we prefer local definitions of field references
over definitions that traverse more edges, and definitions found in super‑classes over
definitions found in the lexical context, we would use a label order $ < EXT < LEX.
The special label $, assumed different from all user‑provided labels, is used for end‑
of‑path.

We use the following notation: A scope graph G is a triple 〈S, E, ρ〉 of scope identi‑
fiers S, edges E, and a partial function ρ from scopes to associated data. The function

3This scope graph is a simplification of the scope graph that would be necessary to support all Java’s
name resolution features, and does not account for the possibility of named and wildcard imports, implicit
package visibility, nested classes, etc.

4We say binding is lexical if binders are only visible in sub‑terms of the term where they are bound.
Examples are lambda and let expressions. If the scope of the binder is wider, we say the binding is non‑
lexical. Examples are identifiers imported from modules, or references to members on expressions of a
class/record type.

5.3 Type Checking with Scope Graphs 131

package p;
public class A {

int f;
}

package q;
public class B extends p.A {

public int m() {
return f;

}
}

Figure 5.2: Example Java program with two compilation units.

sR

sp → p

PKG

sq → q

PKG

sA → A

CLS

LEX

s f → f

FLD

sT(f) → int

TYPE

sB → B

CLS

LEX

EXT

sm → m

MTHDLEX

sT(m) → fun([], int)

TYPE

p
A

f

Figure 5.3: Scope graph corresponding to the Java program in Figure 5.2.

scopes(G), edges(G), and data(G) project the three components of the triple. Query
parameters are a path well‑formedness regular expression re, a data matching pred‑
icate D, and a strict partial order on labels L. We use Dx for the predicate matching
the name x. The result of a query is an answer set A of tuples (p, d) of a path p and
a datum term d. A path p is either a single scope s, or a labeled step p · l · s, and
target(p) projects the last scope of path.

5.3.2 Critical Edges for Safe Name Resolution

Type checkers use the scope graph to resolve names, but must also construct the
scope graph. When type checking starts, all we have is an empty scope graph, which
is gradually built up as type checking progresses. Rouvoet, van Antwerpen, et al.
(2020a) observe that it is not always possible to construct the full scope graph with‑
out already querying it. This can be seen in our example in Figure 5.3 as well. The
construction of the extension edge from sB to sA requires resolving the reference to A
in a partial graph. This raises the question when it is safe to do so. After all, if that
query was executed before the declaration of A is added to the graph, it results in an
undeserved error. A query is considered safe to resolve when its result in the cur‑
rent partial scope graph is the same as its answer in the final scope graph. Rouvoet,
van Antwerpen, et al. (2020a) identify the absence of critical edges as the condition to
guarantee safety. A critical edge is the first edge that is missing in the partial graph

132 5 Scope States

that will be part of the query result in the final graph. For example, if the graph in
Figure 5.3 was complete except for the EXT edge between sB and sA, this edge is criti‑
cal for the resolution of the reference f. But the same missing edge is not critical for
the resolution of p.

Since determining the critical edges in an incomplete scope graph amounts to
solving the whole name resolution problem, Rouvoet, van Antwerpen, et al. (2020a)
proposeweakly critical edges as a conservative approximation of critical edges. Weakly
critical edges are missing edges that may lead to a result for the query. In our earlier
example, the missing EXT edge is weakly critical for the resolution of f even if sA does
not eventually contain a declaration for f.

5.3.3 Scope States

The final step to guarantee safe resolution is then to determine the weakly critical
edges. The solution of Rouvoet, van Antwerpen, et al. (2020a) is a predicate over a
constraint set, which is specific to the Statix meta‑language. The crucial property of
their safety predicate is that the set of weakly critical edges only decreases as type
checking progresses. They prove that this ensures that once a query is executed, there
can not be additions to the scope graph that lead to new results for that query. Our
purpose is to develop a language‑independent framework for parallel type check‑
ers that correctly handles the dependencies between compilation units. Dependen‑
cies are the result of name resolution, thus handling the dependencies between units
means ensuring name resolution between units is correct. If we can capture the pres‑
ence of weakly critical edges independently of the particular type checker and object
language, we can provide a general mechanism to delay queries until they are safe
to execute.

To that purpose, we introduce the notion of scope state, which consists of a state
(open, closing, and closed) and a set of open labels O, consisting of edge labels l or the
special data label $. Then, weakly critical edges are characterized by scopes that are
open and/or have open edges. When a scope is closed, it is always safe to query, since
its associated data and outgoing edges are final. When the scope is closing, queries
over labels that are not weakly critical, i.e. that are not in O, are still safe to execute.
The idea is that once the scope is closing, the set of open labels only decreases, and
only labels in O are weakly critical.

Figure 5.4 shows the state transition diagram for scope states, and Figure 5.5
shows the pre‑ and post‑conditions for the transitions. Initially, scopes are in the
open state. In this state, the set of open labels has not been initialized, so all labels
are considered weakly critical. Initialization with initScope(d, L) changes the state to
closing. The flag d specifies if the scope will have associated data. The set of edge
labels L determines which labels outgoing edges from this scope may have. In the
state closing, the set of open labels, and therefore the set of weakly critical edges, only

5.4 Hierarchical Compilation Units 133

opennew closing closed
initScope(d, L)

setDatum
addEdge(l)
closeEdge(l)

ϵ†

Figure 5.4: Scope states. Transition diagram.

{>} new {O = ∅}
{>} initScope(d, L) {O = L] {$ | d = >}}

{$ ∈ O} setDatum {$ 6∈ O}
{l ∈ O} addEdge(l) {>}
{l ∈ O} closeEdge(l) {l 6∈ O}
{O = ∅} ϵ† {>}

Figure 5.5: Scope states. Transition conditions and effects.

decreases. The preconditions on setDatum and addEdge(l) guarantee that the shape
of the scope with respect to a label l only changes when the label is in the set of open
labels O. The associated data of a scope can only be set once, therefore setDatum al‑
ways removes the data label $ from the set of open labels. Edge labels are closed with
closeEdge(l), which removes that label from the set of open labels, after which no new
edges with that label are allowed, and the label is not weakly critical anymore. After
all labels have been closed, the scope is complete and in the state closed.

5.4 Hierarchical Compilation Units

In this section we introduce a model of hierarchical compilation units. We extend
scope states with a notion of sharing that is required by this model. Finally, we
present the API of our framework, and code samples for the type checkers that may
check our running example.

5.4.1 The Compilation Unit Model

We propose a model of hierarchical compilation units. The goal of this model is to
be flexible enough to handle many different project structures. Examples of typical
project structures that we support are:

• a flat set of compilation units for the source files in the project, each of which
introduces global declarations that are accessible from other source files,

134 5 Scope States

• a tree of compilation units, where intermediate nodes represent packages or
modules, and the individual source files are the leaves, or

• a project which depends on a library that is otherwise independent of the pro‑
ject.

Each compilation unit in our model has an associated, user defined, type checker.
Compilation units can spawn sub‑units, with their own associated type checkers.
Each compilation unit builds a local scope graph by creating scopes, setting data,
and adding edges. The compilation units are connected via scopes that are shared
between units and their sub‑units. Shared scopes allow sub‑units to provide dec‑
larations that are reachable for other units, and to resolve to names in other units.
The examples above all fit into this model. A project with a flat structure consists of
one project unit, which creates a global scope that is shared with all file units, which
add globally reachable declarations to the global scope. A project with hierarchical
packages has compilation units for each package level, each with their own package
scope, which is declared in the scope of the parent package. In a project consisting of
a library and a program that depends on it, the program and the library have their
own root scopes, and the dependency is reflected by an edge from the program root
scope to the library root scope.

The compilation units for our Java example of Figure 5.2 follow the package hi‑
erarchy. Figure 5.6 shows how the scope graph of our example is distributed over
compilation units. Our example program has five compilation units, which are de‑
picted by the dashed boxes. At the top level, surrounding the whole scope graph, is
the unit that represents the whole program. The packages p and q are sub units, each
containing the units for the class in that package. The owner of a scope or edge in the
graph is the unit that created the scope or edge. For example, the root scope sR is
owned by the root unit, while the class scope sB is owned by the innermost unit for
the class B. Visually, a scope is owned by the innermost unit that contains it, while
an edge is owned by the innermost unit that contains the edge label. The MTHD edge
is therefore owned by the unit of B, as is the LEX edge to sR.

5.4.2 Safe Name Resolution with Sharing

The connection between units and sub‑units is established through scopes that are
shared from a unit to its sub‑units. As a result, multiple units may contribute to a
scope, something that the unit owning the scope must take into account when han‑
dling queries in that scope. Therefore, we extend scope state with sharing, to account
for the fact that scope state is determined by the owner as well as by sub‑units with
which the scope was shared.

Sharing can result in outgoing edges having a different owner than their source
scope, as units can contribute outgoing edges to either their own scopes, or scopes

5.4 Hierarchical Compilation Units 135

sR

sp → p
PKG

sq → q
PKG

sA → A
CLS LEX

s f → f

FLD

sB → B
CLSLEX

EXT

sm → m

MTHD

Figure 5.6: Compilation units for the Java program of Figure 5.2. The dashed boxes indicate
the boundaries of the compilation units. A scope is owned by the innermost unit in which it
appears. Edges are owned by the innermost unit that contains their label.

owned by one of their enclosing units that are shared with the unit. In our example,
the CLS edge to sB has source scope sq, which is owned by the unit of package q, not
by the unit of B. The data associated with scopes can only be provided by the owner.

The compilation unit that owns a scope is responsible for executing queries on
that scope. Every unit maintains an aggregate view of each scope it owns, consisting
of all the edges contributed by itself or by sub‑units that the scope is shared with.
To ensure safe name resolution in this model, we must account for sharing of scopes
between units. When a unit initializes one of its scopes, it does not necessarily know
what edges any of the sub‑units may contribute. The sub‑units must therefore ini‑
tialize shared scopes as well, so that the scope owner has a complete picture of the
state of the scope. In the previous section, a scope moved immediately to the closing

state when it was initialized. When the scope is, or can be, shared, this is not correct.
When a scope is not in state open, we expect that the set of open labels only decreases.
The initialization of the scope by a sub‑unit could increase the set of open labels. On
top of that, if the scope is shared with a new sub‑unit, this sub‑unit must now also ini‑
tialize the scope, potentially adding open labels. We can be sure that the set of open
labels will only decrease, when all units that the scope is shared with have initialized
it, and none of those units will share the scope with new sub‑units.

To handle sharing correctly, we extend scope states with an explicit notion of shar‑
ing. The state diagram for scope states with sharing is shown in Figure 5.7, and the
pre‑ and postconditions for the transitions in Figure 5.8. The extended scope state
consists of a set of open labels per unit O, a set I of units that must initialize the scope,
and a set H of units that may share the scope with new sub‑units. All transitions
take a parameter u that indicates which unit is responsible for the event. Creation
of a scope is indicated by new(u, d), where u is the owner and the flag d indicates

136 5 Scope States

opennew(u, d) closing closed

initScope(u, L, h)
shareScope(u, û)
closeScope(u)

setDatum(u)
addEdge(u, l)
closeEdge(u, l)

ϵ‡

setDatum(u)
addEdge(u, l)
closeEdge(u, l)

ϵ†

Figure 5.7: Scope states with sharing. Transition diagram.

{>} new(u, d)


I = {u},
O = {$ | d = >},
H = ∅


u ∈ I,

O = O′,
u 6∈ H

 initScope(u, L, h)


u 6∈ I,

O = O′] {(u, l) | l ∈ L},
u ∈ H

{
u ∈ H,

û 6∈ I

}
shareScope(u, û) {û ∈ I}

{u ∈ H} closeScope(u) {u 6∈ H}
{(u, $) ∈ O} setDatum(u) {(u, $) 6∈ O}
{(u, l) ∈ O} addEdge(u, l) {>}
{(u, l) ∈ O} closeEdge(u, l) {(u, l) 6∈ O}

{I = ∅, H = ∅} ϵ‡ {>}
{O = ∅} ϵ† {>}

Figure 5.8: Scope states with sharing. Transition conditions and effects.

5.4 Hierarchical Compilation Units 137

1 interface TypeChecker
2 function run(S)
3 end
4 interface CompilationUnit
5 function freshScope(d) : s

6 function addSubUnit(tc, S)
7 function initScope(s, L, h)
8 function closeScope(s)
9 function setDatum(s, d)
10 function addEdge(s, l, s′)
11 function closeEdge(s, l)
12 async function query(s, re, D, L) : A
13 end

Figure 5.9: Type Checker and Name Resolution API.

whether the scope has associated data. The flag d is not part of initScope anymore,
because only the owner can set data, but the scope is initialized by all units that the
scope is shared with. When a scope is shared with a unit û with shareScope(u, û), that
unit is added to the set I. Every unit that the scope is shared with must initialize it
with initScope(u, L, h), after which it is removed from I. A unit initializes the scope
with the set of open labels L, a well as the flag h to indicate that the unit may share the
scope with sub‑units. The scope moves to the state closing when the set of uninitial‑
ized units I and the set of sharing units H are both empty. When the state is not open
anymore, the set of open labels will only decrease. The events setDatum(u) indicates
associated data is set, while addEdge(u, s, l, s′), and closeEdge(u, s, l) indicate adding
an edge and closing an edge label. The preconditions require that these events are
only coming from units that have already initialized the scope. Note that these events
are allowed in the states open and closing. This ensures that, if a scope is shared be‑
tween multiple units, each unit can extend that scope without having to wait for all
other units to initialize the scope first.

5.4.3 Name Resolution API

The key to support parallel execution of type checkers is to correctly handle the de‑
pendencies between compilation units, which result from name resolution. Queries
into a unit that has not constructed the relevant part of its scope graph must be de‑
layed, and executed whenever the scope graph is complete enough. Our framework
hides this scheduling from type checkers, and thus provides implicit parallel execu‑
tion. Type checkers are programmed against a name resolution API, shown in Fig‑

138 5 Scope States

ure 5.9, which contains methods to specify name binding by building a unit’s scope
graph, resolve names by querying the scope graph, and start sub‑units.

Names are resolved with the query(s, re, D, L) function, which is defined as async
to reflect the fact that queries cannot always be answered directly by other compila‑
tion units. It is up to the type checker to decide if the result should be immediately
awaited, or if other work can be done until the answer is available. The framework en‑
sures correct query answers by keeping track of scope states and scheduling queries
based on these scope states. Type checkers are responsible for providing the frame‑
work with the necessary information to maintain the scope state. The type checker
must therefore initialize the set of (locally) open labels and announce whether it may
share the scope with sub‑units, and it must close edge labels once all edges with that
label are added. All the interaction with other units, such as forwarding queries to
the right unit, delaying queries, and maintain scope state on sharing is completely
hidden from the type checker. For example, the function addSubUnit(tc, S), which
starts a sub‑unit with the given type checker tc and initial scopes S, takes care of
recording the sharing of scopes, and starts the type checker to run in parallel. Type
checkers specify what they do locally, the framework implicitly takes care of their
parallel execution.

The pseudo code in Figure 5.10 shows how the API could be used to implement
a type checker that checks the Java running example.5 Each type checker is an actor
that extends the CompilationUnit actor that provides the API, which is explained in
detail in Section 5.5. At the top level is JavaRootTC, which takes no scope arguments,
and creates the root scope of the project. Initialization specifies no open edge labels,
but does allow sharing. For each package a new sub unit is started with a package
type checker that takes the root scope as argument. The first is the root scope, which
is passed down to the class scopes. After creating the sub units, the scope is closed, to
indicate it will not be shared anymore. The package type checkers start by initializing
the shared root scope, indicating the scope may be shared with sub units, and mark‑
ing PKG as open to allow adding the package declaration. A new package scope sp
is created, with the package name as associated data. The root scope and package
scope are shared with the sub units for the classes in the package, after which both
scopes are closed. Finally, the package declaration is added to the root scope and the
PKG label is closed.

Although not immediately evident in this small example, the fact that the API is
fine‑grained (e.g., separating closing a scope for sharing from closing an open edge
label) allows greater flexibility in how the type checker is implemented than when
a type checker would be responsible for aggregating all these events until one final
event can be constructed.

5We show all API calls directly, to show how the API can be used. We imagine that in an actual type
checker implementation, common patterns of usage would be abstracted away for nicer code.

5.4 Hierarchical Compilation Units 139

1 actor JavaRootTC(P) extends TypeChecker
2 function Run({})
3 sR := freshScope(⊥)
4 initScope(sR, ∅, >)
5 for each (p, C) ∈ P do
6 addSubUnit(JavaPkgTC(p, C), {sR})
7 closeScope(sR)
8 end
9 end
10 actor JavaPkgTC(Jpackage x;K, C) extends TypeChecker
11 function Run({sR})
12 initScope(sR, {PKG}, >)

13 sp := freshScope(>)
14 initScope(sp, ∅, >)
15 setDatum(sp, x)
16 for each c ∈ C do
17 addSubUnit(JavaClassTC(c), {sR, sp})
18 closeScope(sR)
19 closeScope(sp)

20 addEdge(sR, PKG, sp)
21 closeEdge(sR, PKG)
22 end
23 end
24 actor JavaClassTC(Jclass x extends y { ... }K) extends TypeChecker
25 function Run({sR, sp})
26 initScope(sR, ∅, ⊥)
27 initScope(sp, {CLS}, ⊥)

28 sc := freshScope(>)
29 initScope(sc, {LEX, EXT, FLD,MTHD}, ⊥)
30 setDatum(sc, x)
31 addEdge(sc, LEX, sR)
32 closeEdge(sc, LEX)

33 addEdge(sp, CLS, sc)
34 closeEdge(sp, CLS)

35 {(p, z)} := await query(sc, LEX∗CLS, Dx, . . .)
36 s′c := target(p)
37 addEdge(sc, EXT, s′c)
38 closeEdge(sc, EXT)

39 // ... etc ...
40 end
41 end

Figure 5.10: Sketch of a simplified type checker implementation for Java packages and classes.
The type checker is defined as compilation units JavaRootTC for the project root, JavaPkgTC
for packages, and JavaClassTC for classes. The presented code shows the construction and
querying of package and class definitions.

140 5 Scope States

msg := Start(S) | InitScope(s, L, h) | ShareScope(s) | CloseScope(s)
| AddEdge(s, l, s′) | CloseLabel(s, l) | Query(s, re, D, L)
| DeadlockQuery(u, m) | DeadlockReply(u, m, U) | Deadlocked(U)

token := initScope(s) | closeScope(s) | closeLabel(s, l) | answer(f)

Figure 5.11: Compilation Unit. Messages and wait‑for tokens.

The pseudo code for JavaClassTC shows a pattern in which scope graph construc‑
tion and querying are interleaved. The query for the super class is executed and the
type checker waits for the result to be able to construct the EXT edge between the class
scopes. It is important to realize that, because the framework ensures safe name reso‑
lution, this also introduces the possibility of deadlock. If, for example, the JavaClassTC
type checker would postpone closeEdge(sc, LEX) until after awaiting the query result,
the query would get stuck on the still open edge label. It is therefore important to
realize that type checker developers are still responsible for scheduling concerns that
are part of any compiler implementation (concurrent or not), such as ensuring dec‑
larations are introduced before they are queried. The framework cannot solve these
issues, as they are dependent on the specifics of the object language, but it ensures the
local behavior is preserved when run in parallel. The Statix meta‑language (Rouvoet,
van Antwerpen, et al., 2020a) provides implicit maintenance of scope state and flexi‑
ble scheduling as part of the meta‑language semantics, so that these concerns can be
left implicit in a Statix type system specification. The case study in Section 5.6 shows
that it is possible to implement a Statix solver on top of our framework, which gives
the best of both worlds: implicit parallelism and implicit handling of scope state and
scheduling.

5.5 Parallel Actor-Based Algorithm

In this section we present an algorithm that implements the compilation unit model
and API that were introduced in the previous section. First we introduce the actor
model that forms the basis of our algorithm, then we discuss the three main aspects
of the algorithm:

• maintaining the scope graph and scope states for owned and shared scopes,

• safely resolve queries on own scopes and delegate queries on other scopes, and

• detect deadlock between compilation units to ensure termination.

5.5.1 Compilation Unit Actors

The algorithm is written following the actor paradigm (Agha, 1990). Actors are a
concurrency model based on message passing. An actor has only local state, and

5.5 Parallel Actor-Based Algorithm 141

1 actor CompilationUnit()
2 var: scope graph G
3 var: counting wait‑for graph WFG
4 var: delays Z := ∅

5 abstract function run(S)

Figure 5.12: Compilation Unit. Local actor state.

communicates with other actors through messages. Actors are not internally con‑
current, and they do not share state. This makes reasoning about concurrency easier
with actors than with approaches based on shared state and explicit synchronization.

A compilation unit corresponds to a CompilationUnit actor, which definition and
local state is shown in Figure 5.12. The members of a CompilationUnit, which are
introduced in the following sections, are shown in Figures 5.13, 5.15, 5.16 and 5.20.
The local state of compilation units consists of a scope graph G, a counting wait‑for
graph WFG, and a set of delayed queries Z . The messages that form the protocol
between compilation units are listed in Figure 5.11. Type checkers are implemented
by extending the actor and implementing the abstract run method.

Since there are many variations of the actor model, we give a quick overview of
the features that we assume in the model:

• Actors are started using start, and form a hierarchy. The keywords self and
parent refer to the current actor or its parent actor, respectively. Actor refer‑
ences can be sent to other actors.

• Actors implement receive members for all messages that they accept. Inside
a message handler, the sender keyword refers to the sender of the current
message. Messages are sent using send actor, msg. Messages that require a
response are sent with request actor, msg and the response is sent from the
message handler with reply msg. Messages from one actor to another are de‑
livered in order, but delivery of messages from different actors is arbitrarily
interleaved.

• Actors may implement auxiliary functionmembers, which can only be invoked
locally.

Some algorithms are presented in an asynchronous style, using futures. They use
the following primitives:

• A future f represents a value that may be provided later. The value of a future
is set by applying it, written as f (v).

142 5 Scope States

• Functions can be marked as async to indicate that they return a future. Inside
asynchronous functions, the await keyword is used to await the results of fu‑
tures.

• Awaited futures do not block the actor, but suspend the currently handled mes‑
sage and allow other messages to be processed by the same actor. A resumed
computation (as a result of a reply or an applied future) always runs in the con‑
text of the actor that started it, and never concurrently with message handling
or other resumed computations.

The message handlers and functions of the type checker API are implemented in a
straight‑forward way. The handler for the message AddEdge(s, l, s′) calls
addEdge(sender, s, l, s′), and the API function addEdge(s, l, s′) calls addEdge(self, s, l, s′).

5.5.2 Maintaining Scope Graph and Scope States

A compilation unit locally maintains its scope graph G and the states of the scopes it
owns. This is done by the group of functions shown in Figure 5.13. These functions
are called to handle API calls from the local type checker, or to handle messages
received from other units. In the former case, the argument u equals self, in the
latter u equals sender.

Scope state is maintained in a wait‑for graph WFG, which consists of edges be‑
tween units, labeled by a token indicating an expected action from the target unit.
The tokens that may appear in the wait‑for graph are listed in Figure 5.11. The state
of the sets I, H, and O of the scope state is determined by the tokens in the wait‑for
graph. An initScope(s) edge to u implies u ∈ Is. A closeScope(s) edge to u implies
u ∈ Hs. A closeLabel(s, l) edge to u implies (u, l) ∈ Os. The state of a scope s can be
determined from the tokens in the wait‑for graph. If the graph contains initScope(s)
or closeScope(s) tokens, the scope is open. If the graph only contains closeLabel(s, l)
tokens, the scope is closing. If there are no tokens concerning s, the scope is closed.

The functions in Figure 5.13 update the wait‑for graph in correspondence with
the postconditions of the scope state transitions. When an element is added to one
of the sets of the scope state, an edge is added with waitFor(u, token). When an el‑
ement is removed from one of the sets of the scope state, an edge is removed with
granted(u, token). For example, when a fresh scope is created with freshScope, the
function adds an initScope(s) token, corresponding to the postcondition u ∈ I of
new. When the scope is initialized with initScope(s, L, h), the initScope(s) is removed,
corresponding to the postcondition u 6∈ I of initScope.

The removal of tokens from the wait‑for graph may result in changes to the weakly
critical edges of a scope. Therefore, the functions initScope, closeScope, and closeLabel
call one of the tryRelease∗ functions to trigger the release of queries that can now be
executed safely.

5.5 Parallel Actor-Based Algorithm 143

1 function start(S)
2 G := G] 〈S, ∅, ∅〉
3 foreach s ∈ S do waitFor(self, initScope(s))
4 run(S)
5 end
6 function freshScope(u, d)
7 pick s fresh in scopes(G)
8 G := G] 〈{s}, ∅, ∅〉
9 waitFor(u, initScope(s))
10 if d = > then waitFor(u, closeLabel(s, $))
11 return s
12 end
13 function initScope(u, s, L, h)
14 granted(u, initScope(s))
15 foreach l ∈ L do waitFor(u, closeLabel(s, l))
16 foreach i ∈ 0 . . . h do waitFor(u, closeScope(s))
17 if owner(s) = self then tryReleaseScopeDelays(s)
18 else send parent, InitScope(s, L, h)
19 end
20 function addSubUnit(u, û, S)
21 foreach s ∈ S do shareScope(û, s)
22 start û
23 send û, Start(S)
24 end
25 function shareScope(u, s)
26 waitFor(u, initScope(s))
27 if owner(s) 6= self then send parent, ShareScope(s)
28 end
29 function closeScope(u, s)
30 granted(u, closeScope(s))
31 if owner(s) = self then tryReleaseScopeDelays(s)
32 else send parent, CloseScope(s)
33 end
34 function setDatum(u, s, d)
35 G := G] 〈∅, ∅, {(s, d)}〉
36 closeLabel(u, s, $)
37 end
38 function addEdge(u, s, l, s′)
39 G := G] 〈∅, (s, l, s′), ∅〉
40 if owner(s) 6= self then send parent, AddEdge(s, l, s′)
41 end
42 function closeLabel(u, s, l)
43 granted(u, closeLabel(s, l))
44 if owner(s) = self then tryReleaseLabelDelays(s, l)
45 else if l 6= $ then send parent, CloseLabel(s, l)
46 end

Figure 5.13: Compilation Unit. Scope graph.

144 5 Scope States

A B C

Start

InitScope
Start

InitScope

ShareScope

msc direct initialization

A B C

Start

InitScope
Start

ShareScope InitScope

InitScope

msc initialization via parent

Figure 5.14: Different initialization scenarios.

Maintaining the scope graph and state locally is not enough for a shared scope s
that is not owned by the current unit. In such cases, when owner(s) 6= self, the
event is propagated to the parent. Because scopes can only be shared with sub units,
this means that the message eventually reaches the owner of that scope. The benefit
of propagating the message via the parent instead of sending it to the owner of the
scope directly has to do with message ordering. Messages coming from two different
units are not meaningfully ordered. This can lead to messages arriving in unexpected
order, as illustrated by the two scenarios in Figure 5.14. Without message ordering,
a scenario where a top‑level unit A, shares a scope with a sub‑unit B, which in turn
shares that scope with a sub‑unit C, could result in A receiving the initialization of C
before the message from B that the scope was shared. If the initialization goes via the
parent B, then unit A always gets the ShareScope message before the corresponding
initialization.

Receiving the messages in order simplifies maintenance of the wait‑for graph and
makes it easier to enforce correct usage of the API in the implementation. This is a
simple solution to achieve that without the need for more complex message ordering
mechanisms such as vector clocks. Sending messages about shared scopes via the
parent is also the reason that the wait‑for graph is a counting graph, that is, tokens
may appear multiple times in the graph. To the unit A it looks as if the unit B has to
initialize the shared scope twice, as it does not know about the unit C. All messages
about sharing and initialization appear to come from B.

5.5.3 Resolving Queries

The name resolution algorithm, shown in Figure 5.15, implements a graph search
that follows well‑formed paths to matching declarations. It is a reformulation of the
algorithm presented by van Antwerpen et al. (2016). The entry point is the function
query(p, re, D, L), which returns the environment of paths starting with the prefix
path p that matches the given query parameters. The search starts at the target scope

5.5 Parallel Actor-Based Algorithm 145

1 async function query(p, re, D, L)
2 u := owner(target(p))
3 if u = self then return await getEnv(p, re, D, L)
4 else
5 f := request u, Query(p, re, D, L)
6 waitFor(u, answer(f))
7 A := await f
8 granted(u, answer(f))
9 return A

10 end
11 async function getEnv(p, re, D, L)
12 L := {l | L(∂lre) 6= ∅} ∪ {$ | ϵ ∈ L(re)}
13 return await getEnvForLabels(L, p, re, D, L)
14 end
15 async function getEnvForLabels(L, p, re, D, L)
16 ~K := ∅
17 Lmax := {l | l ∈ L, 6 ∃l′ ∈ L. L(l, l′)}
18 for each l ∈ Lmax do
19 L′ := {l′ | l′ ∈ L. L(l′, l)}
20 ~K := ~K ∪ {getShadowedEnv(L′, l, p, re, D, L)}
21 ~A := awaitAll ~K
22 return

⋃
A∈~A A

23 end
24 async function getShadowedEnv(L, l, p, re, D, L)
25 kL := getEnvForLabels(L, p, re, D, L)
26 kl := getEnvForLabel(l, p, re, D, L)
27 [AL, Al] := awaitAll [kL, kl]
28 return shadow(AL, Al)
29 end
30 async function getEnvForLabel(l, p, re, D, L)
31 if l = $ then
32 d := await getDatum(target(p))
33 return {a | a = (p, d), D(d)}
34 else
35 S := await getEdges(target(p), l)
36 ~P := {p′ | s′ ∈ S, p′ = p · l · s′, 6 ∃p′ . (p′ · l · s prefix of p)}
37 ~K := {query(p′, ∂lre, D, L) | p′ ∈ P}
38 ~A := awaitAll ~K
39 return

⋃
A∈~A A

40 end
41 function shadow(A1, A2)
42 return A1 ∪ {(p2, d2) | (p2, d2) ∈ A2, 6 ∃p1, d1. ((p1, d1) ∈ A1, d1 ≈ d2)}
43 end

Figure 5.15: Compilation Unit. Query resolution.

146 5 Scope States

of the current path. If the current scope is not owned by the current unit, the query
is forwarded to the owner’s compilation unit. Otherwise, the environment is com‑
puted locally by getEnv(p, re, D, L). That function determines the set of labels L that
is relevant given the current path well‑formedness regular expression. Edge labels l
are relevant if the Brzozowski derivative (Brzozowski, 1964) does not result in the
empty language. If the current regular expression is accepting, that is, its language
contains the empty string ϵ, the current scope may be an end‑point, and the data
label is also relevant. The functions getEnvForLabels and getShadowedEnv together en‑
sure that the environment implements the label order specified for disambiguation,
by ensuring results from more specific labels shadow results from the least specific
labels. For example, if the current set of labels L = {$, FLD, LEX, EXT}, and the label
order is $ < FLD < EXT < LEX, then the resulting environment is

shadow(shadow(shadow(A$, AFLD), AEXT), ALEX)

Al is the answer set for the label l, and shadow is the function that removes answers
from the right‑hand set if its datum matches any answer in the left‑hand set. The
environment for a single label l is computed by getEnvForLabel(l, p, re, D, L). If the
label is the data label $, getDatum is called in the current scope to construct an answer
(p, d). Otherwise, getEdges is used to return the target scopes of all outgoing l‑labeled
edges, cyclic paths are filtered out to ensure search termination, and environments
are resolved for each new prefix path p′ with the updated path well‑formedness. The
result is the union of all resulting environments. The updated set of parameters is
itself a valid, residual, query, which allows us to simply call the top‑level query func‑
tion, which takes care of delegating the query to the right compilation unit.

Compilation units must also ensure that name resolution is safe. When edges or
data are requested for which the label is weakly critical, the answer is delayed. When
a label’s status changes, pending delays are released. The functions isScopeOpen
and isEdgeOpen implement the check for weakly critical edges based on the wait‑
for graph, as explained in Section 5.5.2. The functions getEdges and getDatum decide
based on the result of isEdgeOpen whether the scope graph can be used, or if it has
to delay the answer. If the label is critical, a new future is created, which is stored,
together with the scope and label, in the set of delays Z . The functions tryReleaseSco‑
peDelays and tryReleaseLabelDelays are called whenever the scope state changes, and
return the results for any label that is not critical anymore by applying the stored
future.

5.5.4 Handling Deadlock

The type checkers implemented with our framework can deadlock for various rea‑
sons. The type checker may contain obvious bugs, such as querying a scope before
it is properly closed. But many subtle situations can occur as well, if ill‑bound or ill‑

5.5 Parallel Actor-Based Algorithm 147

1 function waitFor(u, token)
2 WFG := WFG∪ {(u, token)}
3 end
4 function granted(u, t)
5 WFG := WFG− {(u, token)}
6 end
7 function isWaitingFor(u, t)
8 return (self, t, u) ∈ WFG
9 end
10 function isScopeOpen(s)
11 return ∃u. (isWaitingFor(u, initScope(s)) ∨ isWaitingFor(u, closeScope(s)))
12 end
13 function isEdgeOpen(s, l)
14 return isScopeOpen(s) ∨ ∃u. isWaitingFor(u, closeLabel(s, l))
15 end
16 async function getDatum(s)
17 if isEdgeOpen(s, $) then
18 future k
19 Z := Z ∪ {(s, $, k)}
20 return await k
21 else return data(G)(s)
22 end
23 async function getEdges(s, l)
24 if isEdgeOpen(s, l) then
25 future k
26 Z := Z ∪ {(s, l, k)}
27 return await k
28 else return {e | e ∈ edges(G), ∃s′.e = (s, l, s′)}
29 end
30 function tryReleaseScopeDelays(s)
31 if isScopeOpen(s) then return
32 foreach {l | ∃k. (s, l, k) ∈ Z} do tryReleaseLabelDelays(s, l)
33

34 end
35 function tryReleaseLabelDelays(s, l)
36 if isEdgeOpen(s, l) then return
37 for each {k | ((s, l), k) ∈ Z} do
38 Z := Z − {(s, l, k)}
39 if l = $ then k(data(G)(s))
40 else k({e | e ∈ edges(G), ∃s′ . e = (s, l, s′)})
41 end

Figure 5.16: Compilation Unit. Delays and wait‑for graph maintenance.

148 5 Scope States

1 actor JavaClassTC(Jclass x extends y { ... }K) extends CompilationUnit
2 function Run({sR, sp})
3 // ...
4 sc := freshScope(>)
5 addEdge(sp, CLS, sc)
6 A := await query(sc, LEX∗CLS, Dx, . . .)
7 closeEdge(sp, CLS)
8 // ...
9 end
10 end

Figure 5.17: Java Type Checker with Incorrect Internal Scheduling

typed input programs cause scope graph construction to get stuck, even if no dead‑
locks can occur on well‑typed inputs.

Whatever the reason, it is important for the user experience to ensure termination
of the type checking process and the possibility of graceful handling of deadlocks by
the type checker. Our goal is a fine‑grained approach where deadlock is handled by
failing individual queries that contribute to the deadlock, and only fail whole units as
a last resort. Being fine‑grained is especially important in interactive settings, when
a type checker is employed as part of an IDE. Failing the type checker without return‑
ing a result because of an ill‑typed input program completely negates the usefulness
of the type checker to the programmer in helping them fix their program.

A deadlock occurs when a group of units waits on each other without any unit
being able to make progress without receiving a message from one of the other units.
We illustrate this using a faulty version of our Java type checker example, shown in
Figure 5.17. In this implementation, the super class is resolved before closing the
CLS label after the class declaration is added. The program causing deadlock, shown
in Figure 5.18, consists of a class A and a class B that extends A, both defined in a
package p. The two class definitions are checked by their own units A and B, who
declare the classes in the scope sp that is shared with them by the package unit p.
Unit B tries to resolve the class A before closing the CLS edge on the shared scope sp,
and the query gets delayed on that edge by unit p. Now the units are in deadlock,
since p is waiting for B to close the edge, while B is waiting for an answer from p. We
can visualize the dependencies between the units by combining the wait‑for graphs
WFG of all units, as shown in Figure 5.19. We see that deadlock in the graph from
the knot6 of units that cannot make progress.

6In a directed graph, a knot is a set of nodes in the graph such that each node can reach all other
nodes in the set. Communication deadlocks are characterized by knots, while resource deadlocks are
characterized by cycles.

5.5 Parallel Actor-Based Algorithm 149

package p;
class A {}

package p;
class B extends A {}

Figure 5.18: Example program that deadlocks with the buggy type checker from Figure 5.17.

p B

closeLabel(sp)

closeLabel(sp)

answer(. . .)

Figure 5.19: Wait‑for graph for the deadlocked example in Figure 5.18.

To understand how we can handle such deadlocks in a fine‑grained way, we must
understand the shapes these graphs can have. The key insight is that deadlocks in‑
volving more than one unit always involve a query. If we do not consider queries,
the structure of the wait‑for graph is always a tree. Units only wait for initScope,
closeScope, and closeLabel on themselves or direct sub‑units. It is waiting on answers
that breaks the tree structure. Therefore, a knot between different units can only
exist if at least one query is involved. Our approach handles deadlocks by failing
involved queries whenever possible. These failures become exceptions in the type
checker, which can be handled if desired. If a deadlock does not involve any queries,
and thus involves only a single unit, the whole unit is failed and any remaining open
scopes and labels are closed.

The functions for deadlock handling are shown in Figure 5.20. Deadlock detec‑
tion is implemented using the distributed communication deadlock detection algo‑
rithm of Chandy et al. (1983), modified so that it collects all units involved in a dead‑
lock. When a deadlock is detected, the deadlocked function is called on all units in‑
volved, receiving the set U of involved units an argument. In the case that the set U
is a singleton, and the deadlock is local, failing queries is attempted by failDelays, and,
if unsuccessful, the unit is failed with failAll. The function failDelays finds all unan‑
swered queries to units in the deadlock and raises an exception locally (indicated
by the application of the future with ⊥). The function failAll closes any remaining
open scopes and labels and informs the parent if appropriate. At this point the type
checker of the failed unit is never invoked anymore, but the unit itself can still re‑
solve queries for other units and participate in deadlock detection. In the case that
the set U is not a singleton, the failDelays function is used to fail any queries on other
units in the deadlock. We explicitly prevent falling back to failAll in non‑singleton
deadlocks because not every unit has queries it can fail. Failing such a unit in such
cases would be unnecessary, as some other units in the deadlock can fail queries and
resume type checking.

150 5 Scope States

1 function deadlocked(U)
2 if |U| = 1 then
3 if failDelays(U) = false then failAll()
4 else
5 failDelays(U)

6 end
7 function failDelays(U)
8 Z := { f | (u, answer(f)) ∈ WFG, u ∈ U}
9 foreach Z do f (⊥)
10 return Z 6= ∅
11 end
12 function failAll()
13 for each {t | (u, t) ∈ WFG} do
14 granted(self, t)
15 switch t do
16 case initScope(s) do
17 if owner(s) 6= self then send parent, InitScope(s, ∅, false)
18 tryReleaseScopeDelays(s)
19 case closeScope(s) do
20 if owner(s) 6= self then send parent, CloseScope(s)
21 tryReleaseScopeDelays(s)
22 case closeLabel(s, l) do
23 if owner(s) 6= self then send parent, CloseLabel(s, l)
24 tryReleaseLabelDelays(s, l)
25 end
26 end

Figure 5.20: Compilation Unit. Deadlock handling.

5.6 Evaluation

We evaluated our approach by porting an existing scope graph‑based type checker
for a subset of Java to our framework, and measuring speedup resulting from using
multiple cores when analyzing Java projects. The diagram in Figure 5.21 summarizes
the setup of the benchmark. The benchmark executable, source code, and data of our
experiments can be found in the artifact that accompanies this paper.

5.6.1 Benchmark

We implemented the type checker by porting the solver of the Statix meta‑language
to our framework. Adapting the Statix solver was an attractive case study, because
it is a mature project that already uses scope graphs for name resolution. The Statix
solver uses dynamic scheduling for constraint solving, where constraints are delayed
on logical variable instantiation, and was thus a good test case to show that the API

5.6 Evaluation 151

Statix
Solver

Parallel
Frame‑
work

Java
Subset

Statix Spec
Project
ASTs

 Project #Files LOC

commons‑csv 1.7 12 1845
commons‑io 2.6 118 9984
commons‑lang3 3.11 210 29642
single‑unit‑clusters‑call 100 ~32K

Figure 5.21: Benchmark setup

provided by the framework is flexible enough to cope with such dynamic scheduling.
Therefore, we expect that type checkers in many different scheduling styles can be
implemented with our framework, which we plan to explore in future work.

The type checker used a Statix specification for a subset of Java based on an ex‑
isting MiniStatix specification (Rouvoet, van Antwerpen, et al., 2020a). This specifi‑
cation focuses on name binding aspects of Java, and implements packages, top‑level
and nested type definitions, type inheritance. Overloading is partly supported, while
generics and lambda expressions are not supported.

We used three existing Java projects (commons-{csv,io,lang3}) and one gener‑
ated Java project for the benchmark (single-unit-clusters-call). The existing
Java projects are projects from the Apache Commons project that have no dependen‑
cies besides the Java standard library (JRE). The projects have different sizes, which
allows us to asses the impact of project size on potential speedup. The generated
project serves as a baseline for what is achievable with our parallel Statix implemen‑
tation. It consists of a 100 classes, each class in its own package. The classes contain
a number member methods, and each method body consists of method calls to other
members of the same class. Because the classes are isolated and do not depend on
other classes, the resulting compilation units only interact with the package’s compi‑
lation unit and the unit for the Java standard library, and represent an ideal scenario
in terms of parallelization. All projects and project sizes are listed in Figure 5.21.

Early experiments showed that the JRE, which is also treated as a compilation
unit, often became the critical unit if it was served by a single actor. To eliminate
this effect, the JRE is hosted on as many actors as the number of used cores, using
round‑robin scheduling to distribute queries over the actors. This is possible because
the scope graph for the JRE is precomputed and statically loaded at the start of type
checking.

We ran our type checker on each of these projects using an increasing number
of cores. The benchmarks were executed using the JMH benchmark tool (OpenJDK,
n.d.) in single‑shot mode (the analysis was run once per iteration) using 5 warm‑up
and 15 measurement iterations. The benchmarks were executed on a Linux system
with 128 AMD EPYC 7502 32‑Core Processors 1.5GHz and 256GB RAM.

152 5 Scope States

commons−csv commons−io commons−lang3 single−unit−clusters−call

0 4 8 12 16 0 4 8 12 16 0 4 8 12 16 0 4 8 12 16

2

4

6

8

Number of Cores

n = 15, 99.9% confidence

S
p

e
e

d
u

p

Benchmark Speedup Details

Figure 5.22: Benchmark results for type checking Java projects. Each subplot shows the
speedup, relative to single‑core speed, versus the number of used cores for each project. The
benchmark was executed with 15 sample iterations, and the error bars represent a 99.9% con‑
fidence interval.

The results, shown in Figure 5.22, show the speedup of the parallel type checker,
relative to the single core case, for the number of used cores. The error bars indicate
the 99.9% confidence interval.

First, we see that the generated baseline project scales up to 5.6x for 8 cores. The
scaling slows down more cores are used, but keeps increasing to ~7.8x for 16 cores.

Second, we see that the other projects all have a cut‑off point after which adding
more cores does not result in much speedup. The cut‑offs are approximately at 4
cores for commons-csv, the smallest of the three, with a speedup of 1.8x, at 8 cores
for commons-io, with a speedup of 5.0x, and at 8 cores for commons-lang3, with a
speedup of 4.42x.

The cut‑off in scaling can be explained by looking at the run time of individ‑
ual compilation units. All projects contain a few source files that are significantly
larger than most others. The cut‑off happens when the run time of the whole prob‑
lem is dominated by the run time of the largest compilation unit. If we look at the
speedups discussed before, the run time of the longest‑running unit as a percentage
of the total run time was 84% for commons-csv, 100% for commons-io, and 81% for
commons-lang3. Understanding why scaling slows down for some projects before
the longest‑running unit completely dominates the run time is an interesting question
for future research.

These results suggest that our approach can give significant speedups for the Sta‑
tix type checker. How well the approach scales depends on the type checker im‑
plementation as well as the granularity of parallelism. Our choice to parallelize on
files means that the distribution of file sizes is important for the speedup that can
be achieved. A type checker that supports more fine‑grained parallelization (e.g., on
method bodies), could possibly scale further. Our framework does not require file

5.6 Evaluation 153

granularity and supports more fine‑grained parallelism. Thus, users can experiment
with the granularity that works well for their target language.

Note that these results are for a single type checker and for a single program‑
ming language. Both the implementation of the type checker and the design of the
language may influence the possibility for effective parallel execution. The relation
between language design, the resulting dependency patterns between compilation
units, and the opportunity for parallelization is an interesting topic for future re‑
search. Our framework enables such experiments with parallel type checkers, by
taking the hard parts of parallelization away from the compiler writer.

5.6.2 Supporting Local Inference

The Statix solver uses unification, and often relies on unification variables in scope
graph data to be able to do inference. This posed a challenge when porting Statix
to our framework. Our framework operates under the assumption that compilation
units only communicate via the scope graph. This means the unifier of one compila‑
tion unit is not accessible to other compilation units. While the owning compilation
unit can interpret that data relative to the local unifier, other units can not. We have
a situation where a unit requires an incomplete view of its own data, but other units
should only ever get the complete data.

We added a small extension to the framework to support such local inference
patterns. Type checkers can define a function that produces a representation of data
that is fit for other units:

async function GetExternalRepresentation(d)

The function is asynchronous so the type checker can delay returning the external
representation until unification variables are instantiated. It is applied to the data of
any scope whose owner is not the unit that issued the query. This solution allows
units to do local type inference via the scope graph, while still presenting complete
data to other units.

In the Statix literature, different patterns are used to associate declarations with
types. In the first, the declaration and type are combined as a tuple (x : T), and
stored as the data in a single scope (van Antwerpen et al., 2018). In the second, the
declaration only carries the name as data, and the type is represented as the data of
a separate scope connected to the declaration by an edge (Rouvoet, van Antwerpen,
et al., 2020a). We observed that the first encoding quickly results in deadlock if name
resolution queries (resolve x) are necessary to instantiate the types T: The external
representation of the whole tuple gets stuck on the logical variables in the type, there‑
fore blocking the query for the name. The representation using tuples can easily be
converted into the latter, but is a necessary consequence of the isolated nature of the
compilation units in our approach.

154 5 Scope States

5.7 Related Work

In this section we discuss related work on parallel approaches to build systems, com‑
pilers, and program models used for compiler and static analysis implementation.

5.7.1 Parallel Compilers

Parallel compilers are certainly not a given, even for often used languages, but there
are several languages for which parallel compilers (mature or research prototypes)
exist. These compilers are all for specific languages, but it is interesting discuss the
techniques they use or the performance results they achieve. Although it is hard to
find reliable information on the parallel capabilities of compilers, online discussion in
StackExchange suggest that compilers for at least Java, C/C++, and C#, all often used,
are all single‑threaded (StackExchange, n.d.[a],[b],[c]). The concurrent compiler for
Active Oberon (Reali, 2000) implements ideas that are similar to ours. Scopes (fol‑
lowing the program nesting structure) have an associated state describing whether
all symbols in the scope have been defined, and queries are delayed if scope informa‑
tion is incomplete. The supported scoping structure is specific for the target language
and deadlock is avoided by being careful about what queries are done in what com‑
pilation phase. The implementation uses a shared data structure for the symbol table
with a global lock, which is different from our approach of a distributed scope graph
and units communicating by messages only. Hydra (Triplequote, n.d.) is a commer‑
cial parallel compiler for Scala, which parallelizes the Scala compiler by running the
many phases of the Scala compiler in parallel. Hydra publishes benchmark results
and reports speedups between 1.8–3.5x, depending on the project, on 4 cores (Triple‑
quote, n.d.). Work has been done to parallelize the Rust compiler (Rust, n.d.). The
approach is focused in parallelizing loops in the compiler, while maintaining most of
the current structure of the compiler. However, at the time of writing the documen‑
tation mentions that “work on explicitly parallelizing the compiler has stalled. There
is a lot of design and correctness work that needs to be done.” The Go compiler sup‑
ports parallel compilation at certain levels of the program (Go, n.d.). Particularly, the
compilation of functions inside a package is executed in parallel. Finally, the Swift
compiler takes an interesting approach to achieving parallel build (Swift, n.d.). Ev‑
ery compilation task has a focus, the compilation unit it “really” needs to compile.
In the process it also compiles other units, but only as much as necessary for the fo‑
cus unit. They claim this generally works well, because the necessary work on other
units is limited.

5.7.2 Parallel Build Systems

Our framework shares many characteristics with build systems, as they run and or‑
der compilation tasks based on a dependency graph. The well known build tool

5.7 Related Work 155

Make (Stallman et al., 2016) executes build tasks based on a statically known acyclic
dependency graph. When the object language allows separate compilation, it can run
these tasks in parallel as well. Many other build tools follow the model of Make, and
require the dependencies to be acyclic and known a‑priori. Some build tools such as
Pluto (Erdweg, Lichter, et al., 2015) and PIE (Konat et al., 2018) improve on this model
by supporting dynamic dependency discovery. The resulting dependency graph is
still required to be acyclic. What all these have in common is that the build tasks are
all treated as atomic operations, producing outputs from inputs. The build system is
concerned with ordering these tasks correctly. This is in contrast with our approach,
which makes partial results of a unit available to other units before it is completely
finished. This allows us to support not only dynamic dependencies, but also cycles
in the dependency graph, something that build systems cannot handle.

5.7.3 Parallel Programming Models

Another approach is to write the compiler in a programming model that supports
parallel execution, and the parallelization is not organized around compilation units
anymore.

The JastAdd framework for reference attribute grammars supports implicitly par‑
allel attribute evaluation (Öqvist and Hedin, 2017). The resulting concurrency is
more fine‑grained than in our approach, and not necessarily driven by dependen‑
cies between compilation units. If one writes a compiler using reference attribute
grammars, this is a convenient way to parallelize the compiler. Compared to our ap‑
proach, reference attribute grammars do not provide a ready to use model for name
binding. This means it falls on the developer to come up with suitable representa‑
tions and algorithms for the object language. Applying parallel attribute evaluation
to the ExtendJ Java compiler resulted in speedups of 1.52–2.43x on 4 cores. Although
their evaluation was done on a different set of Java projects, these results suggest that
the performance of our approach is competitive.

LVish (Kuper et al., 2014) proposes a parallel programming model based on mono‑
tonically growing data and freezing variables that reached a final state to achieve
quasi‑deterministic parallelism. It has been successfully applied to parallel type in‑
ference (Newton et al., 2016). This model is very similar to how we handle scope
states: closing scopes and edges corresponds to freezing. The difference is that LVish
is only a model for monotone state, which leaves users to build parallelization around
it. The scope state model is specialized for our purpose, which allows us to make the
parallelization and deadlock handling implicit for the user.

The theorem prover Isabelle/PIDE has strong support for implicit parallelization
of proof checking (Matthews and Wenzel, 2010; Wenzel, 2009, 2013). The granularity
is much smaller than in our approach. They do not support cyclic dependencies
between parallel task, but a high degree of parallelism is achieved by exploiting proof

156 5 Scope States

irrelevance: most dependencies are only on the level of the theorem statements, but
not their proofs. They report speedups up to 5.2–6.4x on 8 cores (Wenzel, 2013).

Several parallel programming models have been developed targeting static anal‑
yses. Because of their focus, these approaches target certain kinds of computations
that are commonly used in static analyses, such as fixed points over lattices (Helm et
al., 2020), parallel iteration over sets (Kulkarni et al., 2007), or established algorithms
such as IDFS (Rodriguez and Lhoták, 2011).

5.7.4 Scope Graphs

Scope graphs (Néron et al., 2015) were introduced as a language‑independent model
of name binding with a focus on expressive, non‑lexical, binding patterns, formal‑
izing and generalizing the semantics of NaBL (Konat et al., 2012). This model was
subsequently extended and used to develop formalisms for the specification of type
checkers (van Antwerpen et al., 2018; van Antwerpen et al., 2016), resulting in the
meta‑language Statix. Followup work (Rouvoet, van Antwerpen, et al., 2020a) de‑
fined a formal, non‑parallel, operational semantics for Statix, and proved it correct.
It introduced the notion of critical edges as a tool to reason about query answer cor‑
rectness in evolving scope graphs. Critical edges were defined in terms of the con‑
structs of the Statix language and the presented operational semantics. In this paper
we introduce scope state as an explicit and application independent description of the
state and transitions of a scope in a evolving scope graphs, which was only implicitly
present in the Statix operational semantics. Porting Statix to the parallel framework
of this paper required reformulating the safety conditions of the original operational
semantics to explicit scope state operations. All this work has been developed and
applied in the context of the Spoofax language workbench (Kats and Visser, 2010).

5.8 Conclusion

In this paper we have introduced a framework for the implementation of implicitly
parallel type checkers. We have introduced the concept of scope state to make the
notion of weakly critical edges in evolving scope graphs explicit. We have presented
a case study and shown that the approach does result in speedups for the larger
projects in our benchmark. For all real‑world projects in the benchmark the scaling
was limited by a few large files, which suggest that more fine‑grained parallelism
(e.g., checking method bodies in parallel) could improve parallelism for this Java
type checker. In general, investigating the relation between the type checker imple‑
mentation/Statix specification and the achievable parallelization for different target
languages is interesting follow‑up research. Other interesting directions for future
research are (a) extending this work to incremental type checking of large software
projects during development, (b) developing useful abstractions for managing scope

5.8 Conclusion 157

state that sit between the fine‑grained API of this paper, where scope state is com‑
pletely explicit, and the high‑level abstraction offered by the Statix meta‑language,
where scope state and evaluation order are completely implicit, and (c) investigating
how this work can be extended to and/or integrated with other compiler tasks such
as parsing, and code generation to create a fully parallelized compiler pipeline.

Acknowledgments We thank the anonymous reviewers for their helpful comments.
This research was funded by the NWO VICI Language Designer’s Workbench project
(639.023.206).

6Towards Language-Parametric
Semantic Editor Services

Abstract Editor services assist programmers to more effectively write and comprehend code.
Implementing editor services correctly is not trivial. This paper focuses on the specification
of semantic editor services, those that use the semantic model of a program. The specifica‑
tion of refactorings is a common subject of study, but many other semantic editor services
have received little attention. We propose a language‑parametric approach to the definition
of semantic editor services, using a declarative specification of the static semantics of the pro‑
gramming language, and constraint solving. Editor services are specified as constraint prob‑
lems, and language specifications are used to ensure correctness. We describe our approach
for the following semantic editor services: reference resolution, find usages, goto subclasses,
code completion, and the extract definition refactoring. We do this in the context of Statix, a
constraint language for the specification of type systems. We investigate the specification of
editor services in terms of Statix constraints, and the requirements these impose on a suitable
solver.

6.1 Introduction

Editor services, such as syntax highlighting, reference navigation, and variable re‑
naming, are an important tool for programmers. For example, code navigation is
important for effective comprehension of code (Robillard et al., 2004), and refactor‑
ing approaches rely heavily on good tool support (Mens et al., 2003). It is therefore
no surprise that such services are regularly used by users of IDEs (Murphy et al.,
2006).

Editor services can be classified into syntactic and semantic editor services. The
former, such as syntax highlighting, rely only on the (abstract) syntax of a program.
The latter depend on a semantic model of the program, and use type or name binding
information. Semantic editor services can be further divided in two groups: services
that inform about the program, and services that transform the program. Informing
services depend on the program model that is the result of type checking. The pro‑
gram model contains information on the types of variables, the declarations that ref‑

Published as Daniel A. A. Pelsmaeker, Hendrik van Antwerpen, and Eelco Visser (2019). “Towards
Language‑Parametric Semantic Editor Services Based on Declarative Type System Specifications (Brave
New Idea Paper).” In: 33rd European Conference on Object‑Oriented Programming (ECOOP 2019). Dagstuhl,
Germany. DOI: 10.4230/LIPIcs.ECOOP.2019.26. Copyright © 2019 Daniel A. A. Pelsmaeker, Hendrik van
Antwerpen, and Eelco Visser. Licensed under a Creative Commons Attribution 3.0 Unported License.

https://doi.org/10.4230/LIPIcs.ECOOP.2019.26

160 6 Towards Language-Parametric Semantic Editor Services

erences refer to, etc. Transforming services are guided by the program model (e.g., to
rename a declaration and all its usages), but may also rely on the typing rules to en‑
sure the resulting, transformed program is well‑formed.

Implementing semantic editor services and ensuring their correctness is not a triv‑
ial task (see, e.g., the difficulties around correctly implementing Java refactorings;
M. Schäfer and de Moor, 2010). Language workbenches are tools to aid the devel‑
opment of programming languages and programming environments (Fowler, 2005)
by means of declarative formalisms and reusable tools that support correctness and
reduce development effort. A good example of this is the use of a context‑free gram‑
mar to specify syntax. This specification can be used to drive a parser, but also for
unparsing, or to provide syntactic code completion. The language developer writes
a declarative specification, which helps with the correctness of the syntax, while ex‑
isting parsing, unparsing, and code completion algorithms can be reused, reducing
development time.

However, even though “editor support is a central pillar of language work‑
benches” (Erdweg et al., 2013), and many language workbenches do indeed support
many common editor services, there is little literature on reusable formalisms and
algorithms for their definition (Omar, Voysey, Hilton, Sunshine, et al., 2017). An
important exception is the extensive work on defining correct refactorings (e.g., M.
Schäfer and de Moor, 2010; Steimann, 2018; Tip et al., 2011). However, many editor
services common to modern IDEs, such as reference resolution, finding declaration
usages, or semantic code completion, have received little attention.

In this paper we argue that a range of semantic editor services, beyond those
that have already appeared in the literature, can be specified as constraint problems.
Constraints separate the declarative specification of a problem from the operational
interpretations necessary to solve it. This separates concerns, but also allows reuse
of constraint‑based specifications for different purposes. For example, in addition to
verifying the correctness of the static semantics of a program, constraint‑based typing
rules have also been successfully used in the implementation of semantically correct
refactorings (Steimann, 2018).

Many editor services rely on name binding information, where complex scoping
and name binding rules can be a challenge for the correct implementation of editor
services (e.g., correct Java refactorings involving names; M. Schäfer et al., 2012). Al‑
though constraint‑based formulations of typing rules are pervasive, constraint‑based
formulations of the scoping and name binding rules are rare. Name binding intro‑
duces complexities, such as avoiding accidental name capture when refactorings in‑
troduce new names. We believe that treating name binding and name resolution as
an integral part of the constraint problem increases the applicability of a constraint‑
based approach to editor services, and can improve existing specifications from the
literature in this regard.

6.2 Characterizing Editor Services 161

As the basis for our investigations we use Statix, a constraint language developed
for the specification of type systems (van Antwerpen et al., 2018). Statix is built
around scope graphs, a language‑independent model for name binding and name
resolution (van Antwerpen et al., 2016). We argue that Statix is a suitable basis for
the definition of editor services by expressing them in terms of Statix constraints
and Statix type system specifications. Although Statix constraints are suitable for a
declarative specification of editor services, the current deterministic solver algorithm
of Statix, suitable for type checking and code navigation, is not capable of solving the
editor scenarios we discuss. We identify requirements for an alternative solver for
Statix that does support the interpretation and solving algorithms required for our
proposed editor service definitions.

Specifically, we have the following contributions:

• We express several common editor services in terms of Statix constraint prob‑
lems.

• We identify requirements on an operational semantics of Statix that is able to
solve these problems.

This paper is organized as follows. Section 6.2 discusses the characteristics of
semantic editor services and motivates our choice of editor services. In Section 6.3,
we introduce Statix, and Statix type specifications using an example. In Section 6.4
we express several informing editor services in terms of the resulting program model.
In Section 6.5 and Section 6.6, we do the same for the semantic code completion and
extract definition refactoring editor services, respectively. In Section 6.7 we discuss
related work. We conclude and discuss future work necessary to fully realize our
proposed approach in Section 6.8.

6.2 Characterizing Editor Services

Editor services can be characterized as syntactic, those that only need the syntactic
model of the program to work, and semantic, those that require the semantic model
of the program (Erdweg et al., 2013). We can further distinguish the semantic edi‑
tor services by whether they transform the program, or merely inform the user. The
informing services include editor services such as goto declaration, finding and high‑
lighting usages, navigating to the supertype, and listing all overriding methods. The
transforming editor services include quick fixes, static semantics‑preserving refactor‑
ings, and (semantic) code completion.

In this section we discuss aspects that distinguish the various semantic editor
services, and motivate our choice for the editor services we discuss.

162 6 Towards Language-Parametric Semantic Editor Services

Completeness Some editor services have to be able to work on syntactically and/or
semantically incomplete programs. For example, as code completion can be invoked
while the user is typing, it must be able to deal with a program that is both syntac‑
tically and semantically incomplete. Similarly, the fix import quick fix that adds an
import statement to a program to make a reference resolve, must be able to deal with
programs that have incomplete semantic information; namely the program with the
reference that initially does not resolve. Other editor services could provide a better
user experience if they can deal with syntactically or semantically incomplete pro‑
grams, but this is not a requirement.

Preserving Static Semantics The transforming editor services all need to preserve the
existing semantics of the program up to some degree. Refactorings such as rename
refactoring and extract definition tend to have very strict semantic preservation require‑
ments, including that all existing references need to resolve to the same declarations
before and after the refactoring. Quick fixes and code completion, by their nature, in‑
troduce new syntax that may change certain local semantics of the code, but should
not have an impact outside the area of influence.

Concrete Name Generation Often, transforming editor services add new declarations
to the program as part of their refactoring or fixing behavior. These declarations need
a concrete name, one which is syntactically valid and does not clash with existing
names in the program. That is, the new name should not overlap with existing names,
or cause inadvertent variable capture.

What We Study Given the characterization above, we picked five editor services for
which we describe the ideas of this paper. As informing editor services we choose ref‑
erence resolution, find usages, and list subclasses, because they show how scope graphs
can be used to answer these queries, where the last one requires language‑specific
knowledge. The last two also explore how flexible the solver must be to be able to
answer such inverse queries.

We discuss two transforming editor services: code completion, which will have to
deal with syntactically incomplete programs, and the extract definition refactoring,
which is interesting because it introduces new syntax for which we want to use the
solver to find the concrete, semantically correct, values to fill in.

We do not claim that these editor services cover all issues, or that the resulting re‑
quirements cover all editor services. However, we think that they exhibit a sufficient
range of features to show the range of possibilities, and expose important require‑
ments that need to be fulfilled to realize our approach.

6.3 Introduction to Statix 163

0 D : type:Scope Declaration

Labeled edge Associated scope

Reference Scope1

P

R

Figure 6.1: Overview of the notation used for scope graphs in this paper.

6.3 Introduction to Statix

Statix is a recently introduced meta‑language for the specification of static seman‑
tics (van Antwerpen et al., 2018), based on scope graphs and constraints (Néron et
al., 2015; van Antwerpen et al., 2016). We chose Statix because it allows us to declare
semantic editor services in terms of constraints and type system specifications.

First, we explain scope graphs, a language‑independent model for name binding
and name resolution. Then, we introduce the rules for static semantics, and their
(declarative) meaning. Finally, we explain how type checking based on these rules
is implemented. We use the Java program in Figure 6.2 as a running example. The
subscripts on program identifiers are a notational convention we use to distinguish
different occurrences of the same name.

Name Binding with Scope Graphs In Statix the name binding and resolution is part
of the constraint problem, to allow complex interactions between type checking and
name resolution. The name binding structure of a program is represented as a lan‑
guage‑independent model called a scope graph (Néron et al., 2015; van Antwerpen
et al., 2018; van Antwerpen et al., 2016), which is a graph of scopes and declarations
in those scopes. As shown in Figure 6.1, the scopes are connected by labeled, di‑
rected edges. Name resolution corresponds to a query finding a path in the graph to
a matching declaration.

Consider our example program and the corresponding scope graph in Figure 6.2.
The global scope of the whole program is represented by the circled node 0. The
definition of class A corresponds to a declaration A1. Declarations contain both the
name and its type, and therefore use the ’is of type’‑symbol “:” to label these edges.
Class types are represented by the class scope. For example, scope 1 is the scope
of class A, and its type is CLASS(1). The class scopes are lexical sub‑scopes of the
global scope, which is modeled by the P‑labeled (parent) edges. The fact that class B
extends class A is represented by the edge labeled S (supertype). This edge makes the
fields from the super class visible in the subclass, but is also used to decide subtyping
between class types. The field declarations are similar to the class declarations, but
in the class scopes.

164 6 Towards Language-Parametric Semantic Editor Services

class A1 {
int f2 = -1;

}
class B3 extends A4 {

int g5 = f6;
}

0A1 : CLASS(1) :

1

P

f2 : INT :

B3 : CLASS(2):

2

P

A4

S g5 : INT: f6

(J‑ClassDec)

∇sc sc
P s s : Ci : CLASS(sc) sc ` d OK

query s P∗ : DECL(Dj) as Dk : CLASS(sd) sc
S sd

s ` classCi extendsDj { d } OK

(J‑FieldDec)

s ` JtK⇒ T s : f j : T
s ` e : T′ ` T′ <: T

s ` t f j = e; OK
(J‑Var)

query s P∗S∗ : DECL(xi) as xj : T

s ` xi : T

(T‑Int)
s ` JintK⇒ INT

(T‑Class)
query s P∗ : DECL(Ci) asCj : T

s ` JCiK⇒ T

(<:‑Int) ` INT <: INT
(<:‑Class)

query s1
S∗ SCOPE(s2) as p

` CLASS(s1)<: CLASS(s2)

Figure 6.2: Example Java program with two classes, its corresponding scope graph, and the
relevant Statix typing rules.

Resolving a name corresponds to querying the scope graph for a matching dec‑
laration. Resolution queries are parameterized by a regular expression that deter‑
mines which declaration can be reached, a predicate determining which declarations
match. An additional order on labels is used to disambiguate multiple matching dec‑
larations. For example, the class reference A4 is resolved in the global scope 0. Class
references are resolved in the lexical context, and the regular expression that encodes
this is P∗:, which matches any path to a declaration via any number of P‑steps to lexi‑
cal parents. The declaration itself should match the reference, which is specified with
the predicate DECL(A4), which holds for any xi where x = A. In this case the reference
resolves directly to declaration A1 in scope 0.

Resolving the variable reference f6 follows the same pattern. However, it should
be possible to resolve not just to variables in the lexical context, but also to fields in

6.3 Introduction to Statix 165

the super class. This is achieved by using the regular expression P∗S∗: . This allows
the reference to be resolved to declaration f2, by following the S‑edge to scope 1.

Type Specifications The rules of a Statix specification formally describe the scope
graph that corresponds to a program, as well as constraints on references and types,
in terms of syntax‑directed rules. Figure 6.2 shows some of the rules that apply to
our example program. For example, the rule (J‑ClassDec) specifies that a class def‑
inition c is well‑formed in scope s, written as s ` c OK, if the scope graph has the
correct structure, and the definitions in the class are well‑formed as well (sc ` d OK).
The first three premises state that the scope graph contains a scope sc that is unique
to this class (∇sc), that this scope has a P‑edge to its lexical parent (sc

P s), and
that there is a declaration Ci for the class in the lexical scope s, typed by the class
scope sc (s : Ci : CLASS(sc)). The last two premises say that the reference to the su‑
per class resolves to a declaration Dk, which is typed by a class scope sd (query s P∗ :

DECL(Dj) as Dk : CLASS(sd)), and that an inheritance edge exists from the scope of this
class to the scope of the super class (sc

S sd).
The rule (J‑FieldDec) specifies that a field declaration is well‑formed if a declara‑

tion for the field exists in the scope graph (s : f j : T), if the assigned expression
is well‑typed for some type T′ (s ` e : T′), and the expression type T′ is a subtype
(` T′<: T) of the semantic type T corresponding to the type annotation (s ` JtK⇒ T).
The relations for semantic typing, subtyping, and expression typing are also defined
with Statix rules. The only built‑in constraints are constraints to define the scope
graph, constrains to query the scope graph, and term equality. All other relations
are completely determined by the rules from the specification.

Type Checking The specification is declarative, and only gives a logical description
of what well‑formed programs are with respect to a scope graph. We made no as‑
sumptions yet on how to operationalize it. One possible interpretation is to use the
specification to type check programs. Checking that a program p is well‑formed cor‑
responds to checking if the constraint s ` p OK is satisfiable. Van Antwerpen et al.
describe an algorithm to solve such constraints, given a specification and a program p
as input (van Antwerpen et al., 2018). The algorithm uses the rules from the specifi‑
cation to simplify constraints until only built‑in constraints remain. These are solved
using unification and scope graph resolution algorithms. This solver is deterministic:
it does not use back‑tracking, and only applies rules if they match the given program
construct. The result of solving a constraint such as s ` p OK is a solution consisting
of a variable assignment V and a scope graph G, or no solution if the constraint can‑
not be satisfied. A resulting program model would also include the types assigned
to all expressions, and the resolution R of all references in the program.

166 6 Towards Language-Parametric Semantic Editor Services

6.4 Informing Editor Services

Many editors have editor services through which the user can navigate their program.
The simplest of these involve clicking a reference and jumping to the corresponding
declaration, or listing all usages of a declaration, but there are also more sophisti‑
cated editor services such as those that list the subclasses of a particular class. All
these services have in common that they can be expressed as queries on the program
model that resulted from type checking. Even though these queries themselves do
not change the program, they may be part of the implementation of other editor ser‑
vices that do change the program. For example, a refactoring that renames a variable
first needs to find all usages of the variable to ensure they are all renamed.

Reference resolution and finding declaration usages can easily be derived from
the program model, which contains the resolution relation R, which consists of pairs
of references and their declaration. Consider the example in Figure 6.2 again. Find‑
ing the declaration corresponding to reference A4, involves finding the entry for the
reference in R. Conversely, finding all usages of declaration f2 corresponds to a re‑
verse lookup. These queries parallel the resolution queries in the typing rules, and
can directly be derived from the specification.

While a query to find all subclasses of a certain class is not directly present in the
typing rules, we can phrase such a query as a constraint, which we solve with respect
to the given program model. For instance, how would we specify — in constraints —
the query to get all subclasses of class A1? We assume as input the declaration itself,
and the scope 0 of the class definition, which should be part of the program model.
The general idea of the query is to find the class scope, find other class scopes that
are connected to it by inheritance edges, and find their corresponding declarations.
This is encoded by the following constraint:

query 0 : DECL(A1) asA1 : CLASS(sc)

query sd
S+ SCOPE(sc)

query s′ : TRUE as xi : CLASS(sd)

where sc, sd and s′ are existentially quantified, and xi is the output. The first con‑
straint says that the class declaration is typed by a scope sc. The second constraint
states that there is a path from some subclass scope sd to the class scope sc. The final
constraint indicates that there is a declaration with any name xi, which is typed by
the subclass scope sd.

None of these constraints appear as such in the typing rules, and we have to do
work to find possible solutions. This may seem daunting, given the free variables
for scopes and names, both of which have infinite domains. However, we are only
interested in solutions that are valid in the context of an existing scope graph. This
scope graph is always finite, which gives us an initial, if maybe inefficient, strategy

6.5 Code Completion 167

to find possible solutions. In the case of our example, there is one solution, where
sc = 1, sd = 2, s′ = 0, and xi = B3.

The given formulation requires an algorithm quite different from the current, de‑
terministic solver of Statix. Instead of strictly relying on inference via forward resolu‑
tion and unification, it needs to be able to guess values, try different alternatives, and
back‑track on failed attempts. An alternative approach could have been to change
scope graph queries to allow backward edge steps. For example, if we use l̂ for back‑
ward steps in the regular expression, our second constraint might have been:

query sc
Ŝ+ TRUE as sd

In this case, we could do forward resolution from scope sc again, reusing the resolu‑
tion algorithm that is already there. Although this approach may work for queries
designed specifically with editor services in mind, it does not work if we want to use
our typing rules as‑is. Therefore, we choose not to change the formalism, but require
a solver that supports more flexible inference.

Summary We showed that queries on the program model can be expressed as con‑
straints, and that finding answers to these queries corresponds to solving these con‑
straints in the context of a given program model. We discussed that solving these
queries requires different solver strategies to be supported by the solver for Statix.
However, this solver would be independent of the specific object language the query
is for, and is therefore reusable between languages. Given such a solver, implement‑
ing such editor services reduces to being able to specify the query as a constraint.

6.5 Code Completion

Code completion is an editor service that suggests a valid code fragment to be in‑
serted at the caret position. This assists the user while typing, attempts to minimize
typing errors, and aids in discovery by showing the possible syntax and references.
Syntactic code completion is the most basic kind of code completion: it suggests
only syntax fragments that fit at the caret location, with no regard for whether the
proposal fits semantically. Semantic code completion improves on this by suggest‑
ing only those proposals that conform to the static semantics of the language, such as
only suggesting expression syntax that can produce a value of the expected type. Ad‑
ditionally, semantic code completion proposes inserting references to declarations,
such as variables, fields, and functions, that are visible from the scope at the caret
location. In this section we discuss how the type system and semantic specification
of a language can be used to provide accurate semantic code completion without
additional work on the part of the language designer.

168 6 Towards Language-Parametric Semantic Editor Services

interface A1 {
int a2();
int b3(int x4, int y5);

}

interface B6 extends A7 {
boolean c8();
int d9(int x10);

}

class X11 implements B12 {
int i13 = |;

}

0 2P

1

P

3

P

S

S

a2 : []→ INT:

b3 : [INT, INT]→ INT:

c8 : []→ BOOL:

d9 : [INT]→ INT:

i13 : INT:

B6 : INTERFACE(2) :

A1 : INTERFACE(1)
:

X11 : CLASS(3)
:

(J‑InterfaceDec)

∇sc sc
P s s : Ci : INTERFACE(sc)

query s : DECL(Dj) as {Dk : INTERFACE(sd)}
sc

S sd sc ` d OK
s ` interfaceCi extendsDj { d } OK

(J‑InterfaceMethodDec)
s ` JCiK⇒ T s ` JCkK⇒ Tk s : xj : Tk → T

s ` Ci xj(Ck xk); OK

(J‑ClassDec)

∇sc sc
P s s : Ci : CLASS(sc) sc ` d OK

query s : DECL(Dj) as {Dk : INTERFACE(sd)} sc
S sd

s ` classCi implementsDj { d } OK

(J‑FieldDec)

s ` JtK⇒ T s : f j : T
s ` e : T′ ` T′ <: T

s ` t f j = e; OK

(J‑ThisMethodCall)

s ` e : V ` V <: U
query s S∗ : DECL(mi) as {mj : U → T}

s ` mi(e) : T

(J‑Plus)
s ` e1 : T1 s ` e2 : T2 T1 = T2 = T = INT

s ` e1 + e2 : T

Figure 6.3: Java program illustrating code completion, and the corresponding scope graph
and relevant Statix typing rules.

6.5 Code Completion 169

In Figure 6.3 we show an example Java program with the caret position denoted
by |, near the end of the last line of class X11. The program is incomplete: it is not
syntactically valid because the user has not yet finished typing. Despite this, we
would want the semantic model of the program so we can suggest relevant syntax
and references.

As a first step, we propose to use the techniques described by de Souza Amorim
et al. (2016) to use the syntactic specification of the language to introduce placehold‑
ers into the abstract syntax. A placeholder is a term in the syntax that represents a
place where syntax of a certain sort, such as an expression or a declaration, could
be inserted. This makes the program syntactically complete, and the placeholders
provide us with syntax terms which we can constrain. Therefore, to the completion
service, the incomplete line of code has the following syntax, with placeholder $Exp
for a possible expression that would complete the program:

int i13 = $Exp;

At this point, we would want to invoke the solver and let it verify our program
using the rules shown in Figure 6.3. However, no rules apply to the placeholder
term $Exp. Instead, we propose to replace any occurrence of a placeholder in the
syntax terms with a corresponding constraint variable in the constraint terms. In
this example, we use ε for $Exp, which, because of the semantic rule (J‑FieldDec),
results in the following constraints for this line:

3 ` JintK⇒ T 3 : i13 : T 3 ` ε : T′ ` T′ <: T

Solving these constraints assigns T′ 7→ INT and T 7→ INT. In other words, the
editor service has inferred that the expected type of the expression on that line must
be INT, and produced the scope graph shown in Figure 6.3. The solver can continue,
trying to find an assignment for ε. There are two rules in Figure 6.3 that it could
apply: (J‑Plus) and (J‑ThisMethodCall). In fact, we would want the solver to return
both solutions for code completion. We will explore both these alternatives.

Expression Completion From rule (J‑Plus) (s ` e1 + e2 : T) we would get the assign‑
ment ε = ε1 + ε2, where ε1 and ε2 are new constraint variables introduced by the
solver. We would like to stop here, and let the solver return the solution ε = ε1 + ε2.
Note that this solution is incomplete: it does not describe the whole program as there
are still free constraint variables in them. Therefore, the solver would need to be able
to return incomplete solutions. As part of this solution, we get some constraints that
not ground because they contain these free constraint variables:

3 ` ε1 : INT 3 ` ε2 : INT

Translated back to syntax terms, replacing the free constraint variables by placehold‑
ers, this would result in the following syntax on the line being completed:

170 6 Towards Language-Parametric Semantic Editor Services

int i13 = $Exp + $Exp;

Of course, we could also let the solver continue its search to find assignments for ε1
and ε2, but this would likely result in an ever expanding sequence of ε1 + ε2 + ε3 +
Ultimately, there are infinitely many solutions if we were to try to make all variables
ground. This shows that we need a way to instruct the solver on how deep we want
a constraint variable to be solved. In this example, we want solutions for ε only one
level deep.

Method Call Completion When the solver instead applies rule (J‑ThisMethodCall),
we get method call completion: where code completion suggests calls to methods in
scope at the caret position, and whose return a type is compatible with the expected
type of the expression. From rule (J‑ThisMethodCall) (s ` mi(e) : T) we would
get the assignment ε = µ(ε), again introducing new constraint variables µ and ε to
represent the method name and arguments respectively.

Since proposing just the syntax for a method call is not very satisfactory to a user,
this time we dowant to get another level of solutions. At least, we want µ to be solved,
but we do not care about ε. We need a way to indicate this to the solver. Through the
rule (J‑ThisMethodCall) the solver would add these constraints:

3 ` ε : V ` V <: U query 3 S∗ : DECL(µ) as {mj : U → INT}

There are multiple possible assignments for constraint variables µ and ε, and for code
completion to work, the solver must find them all. The following table shows the
possible assignments for µ, ε, T, U, and V that the solver might yield.

Solution µ ε T U V

Solution 1 a2 [] INT [] []

Solution 2 b3 [ε1, ε2] INT [INT, INT] [τ1, τ2]

Solution 3 c8 [] BOOL [] []

Solution 4 d9 [ε1] INT [INT] [τ1]

Note that solution 3 is not valid, as it tries to assign T 7→ BOOL whereas T had
previously already been assigned INT. Also note how the solver could infer lists of
constraint variables for U and V. But, as before, we would not want the solver to
keep expanding on the constraint variables it has introduced. If we had not relaxed
these variables such that they may remain free, the solver would have to find some
assignment for the variables that satisfies them. In this example the solver might have
added a method call to an arbitrary method with a compatible return type, such as a2.
In other scenarios the solver may not be able to find such a solution, or find infinitely
many.

6.6 Extract Definition 171

The solutions returned by the solver can be turned into syntax fragments and pre‑
sented to the user as code completion proposals, where we replace the free constraint
variables by syntax placeholders. The order of the proposals is not determined by the
solver, as we consider this to be a separate concern. For example, we may want to
order the proposals by their frequency of use, or use the semantic model to order the
proposals by closeness (e.g., local variables before global variables). In this example,
code completion would propose the following method calls:

a2()
b3($Exp, $Exp)
d9($Exp)

Summary To use the semantic of the programming language for code completion,
we first need a semantic specification that includes a model for name binding. This is
already provided by the scope graphs used by the Statix constraint solver. However,
the solver also needs to support returning incomplete solutions. The solver needs
to be able to distinguish between constraint variables that we want to have solved
and those that may remain free, and we need to be able to indicate how deep we
want a given constraint variable to be solved. By using the semantic rules, a solution
can include syntactic assignments to variables. Finally, the solver must be able to
return more than one solution, so we can display them all to the user as part of code
completion.

6.6 Extract Definition

A common refactoring is the extract definition refactoring, where the user selects a
subexpression and the refactoring replaces any occurrences of that expression by a
reference to a variable definition initialized by the subexpression. In the example
in Figure 6.4, we want to extract the x - 3 subexpression into a separate definition.
We assume the program is syntactically complete and semantically correct.

The first step in this refactoring is to determine the new syntax that we expect as
a result of the refactoring. This is language‑specific syntax, selected by the user and
specified in advance by the language developer. The syntax fragment uses placehold‑
ers, as shown below, where $Type is a placeholder for the type of the newly created
variable and $ID is a placeholder for a variable name. In this case we want all three
occurrences $ID to refer to the same variable.

int f1(int x2) {
$Type $ID = x3 - 3;
return $ID + $ID * x5;

}

172 6 Towards Language-Parametric Semantic Editor Services

int f1(int x2) {
return (x3 - 3) + (x4 - 3) * x5;

}

0

1

P

f1 : [INT]→ INT:

x2 : INT:

(J‑MethodDec)

s ` JCiK⇒ T ∇sm sm
P s s ` JCkK⇒ Tk sm

: pk : Tk
sm ` b OK s : mj : Tk → T sm ` e : U ` U <: T

s ` Ci mj(Ck pk) { b return e; } OK

(J‑VarDec)
s ` JCxK⇒ T s : vy : T s ` e : T

s ` Cx vy = e; OK

(J‑Var)
query s P∗S∗ : DECL(xi) as xj : T

s ` xi : T

(J‑IntBinOp)
s ` e1 : T1 s ` e2 : T2 T1 = T2 = T = INT

s ` e1 ⊕ e2 : T

Figure 6.4: Java program before applying the extract definition refactoring, and the correspond‑
ing scope graph and relevant Statix typing rules.

We create a copy of the previous, valid, solution returned by the solver, and adapt
it to this refactoring. This is a two‑part process: relaxing the solution, and adding
new constraints to the problem. Relaxing the solution removes any variables, reso‑
lutions, constraints, and scope graph nodes that are no longer valid or that impact
the aspects we want to refactor. For extracting a definition, relaxation only involves
removing the reference relation x4 7→ x2, since the reference x4 has been removed.
However, we still want the variable references x3 and x5 to resolve to the same defi‑
nition x2.

Now we can add new constraints to the problem, but the refactoring should add
only those constraints that result from the changed syntax. The constraints may con‑
tain syntax terms, but we replace any occurrences of the placeholders by constraint
variables. For the type placeholder $Type, we will use the constraint variable τ.
Since we want all occurrences of the $ID placeholder to refer to the same variable,
we should replace all occurrences with the same constraint variable.

Where other approaches use the solver to find a concrete name for the variable
(Steimann, 2018), we argue that this is not necessary for the solver to give a correct

6.6 Extract Definition 173

int f(int x) {
int n = x - 3;
return n + n * x;

}

0

1

P

f1 : [INT]→ INT:

n : INT:

x2 : INT:

n

n τ T vj

Solution n int INT n

Figure 6.5: Java program after applying the extract definition refactoring, and the corresponding
scope graph and variable assignments. Note that n in the program is a rigid variable, which
has yet to be assigned a concrete name.

result. We merely want to indicate to the solver that the new name is different from all
other names in the program. This gives a separation of concerns: the solver can verify
that the program satisfies the constraints without needing to produce any concrete
names, and generating the concrete names can be done externally after the solver has
verified the program. For example, some IDEs provide a list of name suggestions that
they generate from the context, such as the type of the expression.

To distinguish the abstract name from any other name in the program, we can use
a rigid variable: one that is distinct from any other variable or name. Similar to how
rigid variables are used to create new distinct scopes in the scope graph (through∇s),
we create a new rigid variable to represent the name of the newly introduced vari‑
able:∇n. Due to rules (J‑VarDec) and (J‑Var), this results in the following constraints:

∇n

1 ` JτK⇒ T 1 : n : T

1 ` (x3 − 3) : T query 1 P∗S∗ : DECL(n) as xj : T

Solving these constraints results in the variable assignment and scope graph shown
in Figure 6.5.

From this we can conclude that the refactoring is valid, does not semantically
change the program (since the existing constraints and reference resolutions are pre‑
served), and that the type of the newly introduced variable is int. However, to finish
the refactoring we have to decide on a concrete name for rigid variable n. A concrete

174 6 Towards Language-Parametric Semantic Editor Services

name can be provided by the refactoring tool or by the user. In any case, we can
test whether the suggested name is allowed by reinvoking the solver with the new
solution and one additional constraint: to constrain n to the chosen name, say i.

n = i

The new constraint may result in an invalid solution, for example when the chosen
name overlaps with another, or causes inadvertent name capture somewhere in the
program. In this example, x is not allowed as a concrete name for n. However, if this
results in a valid solution, the concrete name is acceptable and the refactoring can
finish. In this example it would produce the following code:

int f(int x) {
int i = x - 3;
return i + i * x;

}

Summary As part of the refactoring we generate new syntax, where we use place‑
holders to indicate where we need more information. In the newly generated con‑
straints we have a constraint variable taking the place of every placeholder, which
allows us to use the solver to find a solution to the problem. By using a rigid vari‑
able in place of a concrete name, we can indicate that the name is different from all
other names in the program without having to specify such a name concretely, giv‑
ing a separation of concerns between finding whether the program is valid and what
concrete name to choose.

6.7 Related Work

Erdweg et al. (2013) identify editor services as an important aspect of language work‑
benches, and give an overview of commonly supported editor services. However,
Omar et al. have pointed out that the study of the semantic foundations of editors
and editor interactions has received little attention so far (Omar, Voysey, Hilton, Sun‑
shine, et al., 2017). We discuss work related to code completion, and refactoring, as
those are most relevant to the editor services we covered in this paper.

Reference Resolution Language workbenches such as Xtext (Eysholdt and Behrens,
2010) and Spoofax (Kats and Visser, 2010; Visser et al., 2014) provide support for
language‑parametric reference resolution based on declarative name binding spec‑
ifications. Xtext supports specification of references in the language grammar as
crosslinks, which specify the sort that an identifier can refer to. Xtext will check the
validity of the references and add them to the model.

6.7 Related Work 175

The first approach to declarative name binding specification in Spoofax was the
NaBL name binding language (Konat et al., 2012). The name binding rules defined
the definition sites and their scopes based on the abstract syntax of the program. The
built‑in reference resolution algorithm could only create an index in which references
can be looked up, which limits its flexibility to be used in other editor services.

Instead, the approach we use in this paper uses the expressiveness of the con‑
straints and the flexibility of the Statix constraint solver to enable reference resolution
to be used in various editor services.

Code Completion The Xtext and Spoofax language workbenches also provide sup‑
port for language‑parametric syntactic completion, based on a syntax definition. In
the case of Xtext, it suggests possible keywords. Spoofax suggests complete syn‑
tactic constructs, and represents incomplete syntax trees using placeholders that act
like holes in the program text (de Souza Amorim et al., 2016). This representation is
instrumental for translating an incomplete program to an abstract syntax tree with
variables, which allows us to use it in a constraint context. A program with place‑
holders is similar to the representation of an AST with holes that is common in struc‑
ture editors. Although structure editors are primarily concerned with guaranteeing
that the program is well‑typed with respect to the abstract syntax signature, recent
work investigates editors that also maintain other well‑formedness properties, such
as well‑typedness.

The Hazelnut editor provides a language‑parametric structure editor that guar‑
antees well‑typed ASTs for languages whose type system is defined in a bidirectional
style (Omar, Voysey, Hilton, Aldrich, et al., 2017). JastAdd extends their reference at‑
tribute grammars to provide a context‑sensitive completion service that suggest the
names of variables and functions, but still requires some language‑specific effort to
derive these suggestions (Söderberg and Hedin, 2011). Steimann et al. use constraint‑
based language specifications to ensure edits preserve well‑formedness (Steimann et
al., 2017). They focus on an architecture that allows interaction between the solver
and the user during the editing process, to resolve conflicts that may have been in‑
troduced. Our aim is to generate semantic completion proposals by combining the
mechanisms for syntactic completion, with checking and inference based on the lan‑
guage specification. Another important difference is that issues around name reso‑
lution are largely ignored in their work, because references are actual references in
the underlying model, whereas in our text‑based setting we need to consider naming
issues.

Semantic code completion also has similarities to interactive proof search, such
as offered by proof assistants. For example, the editor of Agda (Coquand et al., 2006)
features holes that are similar to placeholders. An automatic procedure tries to find
proof terms (expressions) that fit the goal (type). There are some important differ‑
ences with our approach to code completion. The procedure to find these terms is

176 6 Towards Language-Parametric Semantic Editor Services

not language‑parametric, but specific to Agda. The search procedure does not exploit
the typing rules, but duplicates knowledge from the type checker. Type correctness
is guaranteed by type checking the fragment after it is generated.

Refactoring There is a long line of research on the specification and implementa‑
tion of refactorings. Tip et al. (2011) study type related refactorings, such as adding
type parameters, extracting interfaces, and pulling up methods. They use type con‑
straints to specify the invariants that ensure correct behavior. Steimann and oth‑
ers (Steimann, 2018) extend this work to include constraints for other aspects such
as access modifiers and names. By representing the program itself using constraint
variables, both the invariants and the refactoring intent can be represented as con‑
straints. Finding the refactored program, within the limits of the given constraints,
is delegated to the constraint solver. This approach is in many aspects similar to
ours, and hopefully techniques they developed for performance carry over to our
approach. An important difference is that by using Statix, the constraint solver is
aware of the complete binding model. In their approach preventing capture requires
the introduction of inequality constraints between names. These constraints do not
follow from regular constraint‑based typing rules. In our approach, the resolution
constraints that are part of the typing rules can also be used to ensure the invariance
of name resolution during refactoring.

6.8 Conclusion

In this paper we have discussed various semantic editor services, and shown how
they can be expressed in terms of the semantic rules, constraints, and scope graph.
We show that Statix constraints are expressive enough to formulate interesting edi‑
tor services. We have pointed out that the Statix solver used for type checking is not
suitable for the scenarios that arise in editor services, and we have identified several
requirements that such alternative solver strategies should have. The main require‑
ments we identified are:

• The solver must be able to try different alternatives, guess values, back‑track on
failed attempts, and able to return multiple solutions. As we have shown, this
is a requirement to implementing code completion, but also for other editor
services such as find usages and find all subclasses.

• Instead of always searching for complete solutions (i.e., assignments to all vari‑
ables), the search should be controlled by user‑defined criteria, including
whether the solver should only consider deterministic inference, or whether
it tries to find solutions non‑deterministically. These criteria should be able to
depend on variables appearing in the constraints. Specifying which constraint

6.8 Conclusion 177

variables may remain unconstrained, and how deep the solver should search
for an assignment, allows us to direct the search to finding solutions to only
those constraint variables we are interested in, and prevent the solver from
getting stuck.

Finally, we propose to extend the mechanisms of creating scopes in Statix to a
general mechanism of rigid variables. These rigid variables can be used to solve
problems around inventing new concrete names in the constraint solver, and should
make it easier to implement various refactorings without having to deal with con‑
crete names, accidental variable capture, and ambiguous names. Factoring out the
choice of finding concrete names separates concerns, and also allows for language‑
specific strategies (e.g., suggesting variables names based on types).

Future Work This paper presented ideas on what would be needed for language‑
parametric semantic editor services. To verify our approach, we need to implement
the proposed extensions to the Statix solver. This will allows us to evaluate their
feasibility in practice, as it is not clear whether implementing some of these tech‑
niques, such as having the solver back‑track and trying to find multiple possible so‑
lutions, would cause performance issues or introduce non‑termination. And if so,
how we could avoid that without impacting the expressiveness of the semantic rules
too much.

There are editor services, other than those we discussed, to which we could apply
our approach, such as fix import, search for symbol, and in particular rename refactoring.
Rename refactoring is interesting because it not only needs to rename the references
to the renamed declaration, but possibly other references and declarations as well.
For example, when a method is renamed, all overriding methods need to be renamed
too, and this relation is not visible in the program model, but only encoded in the
semantic rules.

While our current approach is focussed on preserving the static semantics of the
program, for certain refactorings it may be required to extend the approach to also
preserve certain dynamic aspects of the semantics. Additionally, a combination of
our approaches might be used to implement program generation that is guaranteed
to produce programs that are semantically correct.

Acknowledgments We thank the anonymous reviewers for their feedback on previ‑
ous versions of this paper. We also thank Arjen Rouvoet for his comments and his
work on Ministatix, an implementation of the core Statix language we use for proto‑
typing. This research was partially funded by the NWO VICI Language Designer’s
Workbench project (639.023.206).

7Conclusion

4
3

MAURICE RAVEL, Concerto pour la main gauche

This dissertation proposes a meta‑language for static semantics, based on scope
graphs, that supports directly modeling surface language name binding features,
stays close to a familiar inference‑style of specification, and allows deriving imple‑
mentations for type checkers and editor services. In this chapter we reflect on the
results of this work, suggest directions for future work, and end with some thoughts
on adoption.

7.1 Discussion

The objective of this work, set out in Section 1.4, is to develop a meta‑language for
the specification of static semantics that is principled, expressive, declarative, executable,
reusable, and resilient. In this section we discuss the results according to each of these
goals and assess how well we achieved them. When we talk about the implementa‑
tion, we mean the Statix language as implemented as part of the Spoofax language
workbench, unless explicitly stated otherwise.

Principled The meta‑language Statix is built on well‑defined theories, based on scope
graphs as the model for name binding, and on ideas from logic programming, first‑
order unification, and constraint solving. The core of the meta‑language consists of
logic predicates, scope graph assertions and queries, and term matching and unifica‑
tion. The semantics of the meta‑language, as well as the updates to the scope graph
formalisms, are given clear formal descriptions.

We have not conducted user studies to find out if this approach helps users to
understand and write specifications. However, informal feedback we have received
over the years suggests that users find the language clear and understandable. Most
often the difficulty for users is to understand how to apply scope graph concepts to
their language.

There are two points of critique here. The first is that the scope graph theory al‑
lows references to have multiple interpretations, depending on the context in which
they are resolved (the anomalies of Néron et al., 2015). This runs counter to common

180 7 Conclusion

name binding behavior and leads to confusing and unexpected behavior, indicat‑
ing a mismatch with the intended domain of the theory. The issue was sidestepped
by omitting imports from scope graphs, relying on encodings in the meta‑language
itself. Unfortunately this means that purely name‑based imports are not clearly re‑
flected in the resulting scope graph models anymore.

The second is the complexity of the query construct, which takes several param‑
eters, some of which can be arbitrary user‑defined predicates. This was partly the
result of attempting to be very general, and partly guided by how the resolution algo‑
rithm was defined. The result is a monolithic construct that is difficult to understand.
The formalization in Chapter 4, which breaks up this monolithic construct, results in
a more principled design with simpler, and easier to understand primitives.

Expressive Case studies conducted as part of the work in this dissertation show that
a wide range of name binding and type system features can be expressed, including
sequential and recursive binding, named imports and exports, absolute and relative
qualified names, type‑dependent names, nominal and structural subtyping, poly‑
morphic types and generics, and syntactically ambiguous references. At the same
time, we can identify some major limitations.

The first major limitation is that inference is restriced to first‑order unification.
Inferring scope graph structure is not supported, inhibiting, for example, inference
of structural record types. An important challenge here is that many scope graphs
could support the same usage patterns. Similarly, polymorphic type inference in the
style of Hindley‑Milner, which requires generalization over free constraint variables,
is not supported. This is challenging for two reasons. The first is that types can flow
from references to declarations through unification, which means that deciding the
free unification variables requires deciding if unresolved queries can resolve to any
declaration that is being generalized over. The second is that it is unclear whether
generalization should include parts of the scope graph, and how to delimit that.

The second limitation is that predicate rules are required to be syntax directed. It
is for example impossible to write a general subsumption rule. It is not obvious what
it would take to relax that requirement. For example, practical use of Prolog, which
does not have such a restriction, relies heavily on explicit evaluation order and the
cut operator, whereas our meta‑language design abstracts over all evaluation order.

The third limitation is that it is impossible to express substructural types. These
kind of type systems require reasoning about the count and order of definition ac‑
cesses, for which there are currently no primitives available.

The fourth limitation is that in practice, disambiguation in scope graphs is re‑
stricted to locally decidable label ordering. The theory here is more flexible than the
implemented resolution algorithm. Chapter 4 shows a design that is more flexible in
that regard and allows disambiguation on the full resolution path.

7.1 Discussion 181

Declarative The meaning of specifications is given by a declarative semantics, which
means specifications can be understood without considering operational semantics.
Furthermore, the meta‑language abstracts over the order of computation, which is
pushed completely into the operational semantics. However, as we will discuss be‑
low, limitations of the operational semantics sometimes require tweaking specifica‑
tions to ensure they are executable.

The abstractions that are offered allow effective expression of binding structure
and disambiguation policies. The bookkeeping that is often associated with rich en‑
vironments necessary for non‑lexical name binding are reduced to scope passing,
which looks very similar to regular lexical environment passing. Similarly, many
common typing disciplines and associated type‑dependent names are straight‑for‑
ward to express. User‑defined predicates allow introducing auxiliary abstractions,
based on the primitives provided by the meta‑language, which raises the level of a
specification by naming patterns specific to the language.

Good abstractions are missing for the following common language features, re‑
sulting in complex encodings. The first is syntactic ambiguity for references. An ex‑
ample is Java, where definitions are organized into separate namespaces, but some
references are ambiguous as to which namespace they refer to. This ambiguity can‑
not be encoded in the scope graph itself, and requires rather complex predicates to
encode the decision logic. The second is path‑dependent properties. This is clear in
the encoding of the substitutions for the FGJ generics, which requires a lot of auxil‑
iary code to build the substitutions that are necessary for type application. The third
are name‑based operations such as substition and alpha‑equivalence. Applying sub‑
stitutions is a common need in type systems, especially when polymorphic types are
involved. Unification in the language obviates the need for explicit substitutions in
some cases, in other cases one has to manually write an implementation as part of
the specification. Dependently‑typed languages are particularly challenging because
type equivalence involves type‑level computation and alpha‑equivalence, which are
challenging to specify (Brouwer, 2023).

Executable The work presented in this dissertation focuses on developing an op‑
erational semantics and algorithm that allows specifications to be executed as type
checkers. It is formally described by an operational semantics and proven correct
with respect to the declarative semantics. It is implemented and used for various
case studies and as well as in teaching a language engineering course. Later work de‑
veloped an operational semantics that supports code completion (Daniël A. A. Pels‑
maeker et al., 2022).

The main limitation of the operational semantics is that it is incomplete with re‑
spect to the declarative semantics. This has generally not caused problems for ex‑
pressing the specifications for the case studies we conducted, although Rust imports
are a known example that runs into this problem. Despite not being a problem for

182 7 Conclusion

expressiveness, there have been a few occasions where specifications needed to be
rewritten slightly to avoid incompleteness.

Implementation performance has been acceptable for smaller projects, but chal‑
lenging for large projects, although this improved with recent work (Zwaan, 2022;
Zwaan et al., 2022). The main issues regarding performance are the following. First,
the scope graph resolution algorithm does not allow caching of environments, re‑
sulting in duplicate work. The problem is that the environment of a scope is pa‑
rameterized by the reference that is resolved in that environment, so it cannot be
reused when resolving a different reference in the same scope. Second, the interleav‑
ing of scope graph construction and query resolution adds a lot of complexity to the
implementation. It requires a lot of bookkeeping, as well as speculative query res‑
olution, work that needs to be redone if incomplete scopes are encountered. It also
makes the operational semantics and implementation hard to understand. Third,
the choice to allow arbitrary predicates as query parameters, instead of restricting
queries to simple identifier equality and simple label orders, adds complexity and
hurts performance. Evaluating these predicates introduces overhead and inhibits ef‑
fective optimizations. The formalization in Chapter 4 simplified the query construct
significantly, leaving several parts of the query as post‑processing steps on the query
result set. Initial doubts that this would make incompleteness worse in practice have
not materialized, which suggests that this design might be a better trade‑off between
performance and complexity.

Reusable Both the theory and the implementations have maintained a clear separa‑
tion between language‑specific and language‑independent parts, where the latter are
reusable for every specification. Reuse within specifications is supported by defin‑
ing auxiliary predicates as well as support for organizing specifications into separate
modules. (Ironically, the surface language of the meta‑language itself has not yet
been formalized.) Reuse between specifications is limited and shared libraries with
reusable language concepts have not been developed.

Resilient The approach to resilience has mostly been a practical one. The constraint
solver tries to make as much progress as possible, and turns constraints that re‑
mained unsolved into error messages at the end. This approach is quite rudimen‑
tary and suffers from typical problems associated with constraint‑based type check‑
ers. For example, there is little control over whether error messages appear on the
reference or the definition when the expected type at the reference disagrees with
the definition type. An unsatisfiable constraint easily leads to cascading errors when
other constraints become unsolvable because of unresolved unification variables. A
theoretical treatment of errors and partial solutions has not been developed either.

7.2 Suggestions for Future Work 183

Overall we conclude that our approach is sufficient to express and interpret common
name binding and type system features, and that it scales to the full surface syntax of
real‑world programming languages. The design of Statix meets the goals of princi‑
pled, expressive, declarative, executable, and reusable design well, although we iden‑
tified limitations and possibilities for improvement. However, the goal of resilience
is only minimally fulfilled and important challenges remain for future research.

7.2 Suggestions for Future Work

The previous section discusses the results of the work in this dissertation. This sec‑
tion gives suggestions for future research to either address some of the limitations
we observed, or to take the work in new directions.

Scope Graphs The main theoretical challenge is addressing the unstable interpreta‑
tion of import references. This requires adapting the scope graph calculus to disallow
resolving import references through their importing scopes. This would result in a
theory that better fits the static semantics domain. Follow up research could try to
develop a limited, more controlled fixed point resolution strategy, perhaps restricted
to certain scopes in the graph, that does not suffer from unstable imports.

The developments to increase expressiveness have introduced unnecessary com‑
plexities in the theory, particularly in the structure of queries and the shape of data
associated with scopes. An important simplification to reduce complexity is to dis‑
allow partial matching of scope data, thus simplifying the current predicate query
parameters to straight‑forward equality checks. The work in Chapter 4 moves in
this direction already, which suggests this is feasible without loss of expressiveness
or executability.

Reducing complexity opens up possibilities for improving the performance of the
resolution algorithm by replacing the top‑down search that is currently performed
for every reference with a bottom‑up computation of environments per scope. Fix‑
ing unstable import references makes environments independent of the resolution
context. Reducing data matching to equality makes environments independent of
query parameters and external context they may capture. These together result in
cachable environments and a reduction in duplicate graph traversals.

There are also interesting topics related to increasing expressiveness. The first is
supporting disambiguation policies that cannot be decided using a point‑wise label
order alone. This requires factoring disambiguation out of the current resolution al‑
gorithm, as well as developing high‑level abstractions to express partial orders over
full paths. The second is supporting more complex ways of combining scopes. Cur‑
rently, scopes are always combined using a union operation. But many languages
support renaming imported identifiers, or importing all but a few explicitly excluded

184 7 Conclusion

identifiers. The challenge is to figure out what combination mechanisms are neces‑
sary, how to specify these as part of scopes and edges, and adapt resolution algo‑
rithms accordingly. The third is supporting implicitly defining names that are refer‑
enced but not defined. An example are logic languages that implicitly define vari‑
ables scoped in predicate bodies for references that do not appear in the predicate
head. This touches on many aspects of the calculus, especially if the inferred decla‑
rations are to be added to the graph as new nodes. The fourth is supporting custom
path‑dependent properties that can be computed as part of resolution. An example
is a path‑dependent substitution, which is composed from individual substitutions
attached to scopes and definitions along a resolution path.

A final avenue for research is to unify ideas from scope graphs with those from
stack graphs (Creager and van Antwerpen, 2023). Stack graphs were developed from
scope graphs specifically to support incremental resolution. While similar in many
aspects, there are several differences between the two formalisms. It would be in‑
teresting to see if these differences are mostly cosmetic or more fundamental, and
whether the two could be unified into a single theory.

Meta‑language Developing new abstractions to increase the expressiveness or the
level of specification is an important area of future research. Based on our own experi‑
ence and the case studies, we suggest the following as valuable additions to the meta‑
language. The first is syntactic disambiguation through higher‑level disambiguation
constructs that allow ordered choice and limited search. The second is support for
inference of polymorphic types. Determining which unification variables are free to
generalize is complicated by the fact that currently declaration types may be inferred
from use sites. The last is support for name‑based operations such as substitutions
and alpha‑equivalence, which are important to effectively support polymorphic and
dependent types. There is a wealth of research on capture‑avoiding and hygienic
substitutions that could be used as a starting point.

Major challenges remain around the performance of the meta‑language. Both
the work in Chapter 5 and later work (Zwaan, 2022; Zwaan et al., 2022) have made
gains in runtime performance. But none of these have fundamentally changed the
structure of resolution with its drawbacks, such as expensive predicate evaluation
in scope graph queries, and fully dynamic constraint scheduling. An interesting ex‑
periment, suggested by several people over the years, would be to see if bottom‑up
evaluation of constraints, similar to the work of Erdweg, Bracevac, et al. (2015), is
feasible. Going further would be to eliminate the interleaving of graph construction
and querying altogether, which is one of the most complex parts of the operational
semantics.

An aspect that has received little attention is the output of executing a specifica‑
tion. Currently the output is ad‑hoc and has not always been easy to use for inter‑
pretation or program transformations. A principled program representation with

7.3 On Research Adoption 185

clearly defined query and transformation operations would fill this gap and increase
the usability for the rest of the compiler pipeline. A starting point would be the
work on intrinsically typed representations using scope graphs (Bach Poulsen et al.,
2018). Similarly, when a program does not confirm to a specification, the error mes‑
sages that are produced are not very good. There is existing work on error reporting
for constraint‑based typing that might be applicable here (e.g., Loncaric et al., 2016;
Pavlinovic et al., 2014; D. Zhang et al., 2017; Y. Zhang and Ma, 2014).

There are also possibilities to improve the usability of the meta‑language. Spec‑
ifications can be hard to debug, especially if they trigger incompleteness. Better er‑
ror messages, clearly visualizing all constraints that contributed to a failed or stuck
constraint would be very valuable. There are also opportunities for stronger static
checking of specifications. Schema definitions for scope graphs can be used to check
that the graph constructed by a specification is correct, and verify that query regu‑
lar expressions match the graph structure. We have also considered the possibility
of statically checking that a specification does not trigger the operational semantics’
incompleteness, but so far no viable solutions have been found. Finally, usability
would improve with support for reusable predicates and well‑defined modules. The
ability to import sets of predicates would allow the development of libraries of com‑
mon language patterns. Developing support for generic and possibly higher‑order
predicates in the meta‑language would greatly benefit such libraries.

Finally, an interesting possible use of specifications is for automated test program
generation (or fuzzing). At the moment most fuzzers are hand‑written for a specific
language or language family. Work by Hatch et al. (2023) uses scope graphs for im‑
plementing fuzzers, but does not derive them from existing specifications. Our own
experiments in this area have led to approaches for semantic editor services (Daniël
A. A. Pelsmaeker et al., 2022), but a general solution for generating whole programs
is still missing.

7.3 On Research Adoption

The research in this dissertation always had a strong practical component. Ultimately,
the ideas we develop and the tools we implement are meant to improve the work
of programmers and language engineers. Ideas spread in the research community
through publishing papers, speaking at conferences, or participating in research ex‑
changes. The practice of citations makes it relatively easy to gauge whether the work
is being noticed. Making an implementation available can be an even more effective
way to spread our research. It can greatly reduce the effort necessary to try and apply
our idea, both within and outside academia. Therefore I want to end this dissertation
by reflecting on the practical approach of the research, as well as its adoption beyond
academia.

186 7 Conclusion

The research in this dissertation was conducted in the context of the Spoofax lan‑
guage workbench. The goal of Spoofax is to be a one‑stop shop for language engi‑
neering, offering an integrated experience, where different aspects of a language are
easily developed together (Kats and Visser, 2010). The result is a product that inte‑
grates various meta‑languages, which is used both at university and in collaboration
with industry partners. In a sense it has achieved its goal well. However, the fact
that Spoofax has only been used in collaboration with industry suggests that adopting
it independently is difficult. Let me offer three aspects in which I think the current
form of the project hinders independent adoption.

The first is the insistence on full integration. This has resulted in a system that
is tightly coupled and where it is difficult to use individual aspects of it without re‑
quiring big parts of the system. This makes it more difficult to integrate it in another
context (e.g., using Statix to check ASTs coming out of a preexisting parser, or inte‑
grating it as a part of a current build pipeline), and using part of the system typically
still means introducing many new dependencies. I experienced this myself when
trying to set up stand‑alone benchmarks for the work in Chapter 5.

The second is weak coherence between the meta‑languages. Meta‑languages each
have their own syntactic choices, and (sometimes subtly) different semantics. Part
of this is the result of making languages fit their application domain, and the learn‑
ing curve for a meta‑language is as much about understanding how to apply the
underlying concepts as it is about getting the syntax right. But unnecessary diver‑
gence makes it more difficult to move from one meta‑language aspect to the next.
To give an example, Spoofax supports three meta‑languages that are based on rules
and pattern matching (for program transformation, static semantics, and dynamic
semantics). Yet these languages have different rule syntax, slightly different pattern‑
matching semantics, and quite different module systems.

The third is a focus on designing meta‑languages that are expressive and declar‑
ative, over good performance. I understand this tendency well, given our focus on
solving problems through linguistic abstractions (Visser, 2015). However, perfor‑
mance is important in industry. If performance is not an explicit goal from the start,
it can be hard to achieve afterwards, especially for very expressive languages.

An interesting comparison can be made here with stack graphs, an evolution of
scope graphs developed at GitHub (Creager and van Antwerpen, 2023). Performance
was one of the main reasons why using the original formalism was not feasible, and
only after adapting it to allow for incremental resolution could it be used in practice.
This does not mean that different priorities would have led to something like stack
graphs right away; one idea grows from another. But the improved performance
combined with other engineering choices have led to more interest and actual exper‑
iments than scope graphs have seen. The first choice is that stack graphs are devel‑
oped as a library, engineered for stand‑alone use, and written in Rust. Besides the

7.3 On Research Adoption 187

fact that Rust helped for performance, it also means the library has a C‑compatible
interface, which, for better or worse, is still the gold standard for language interop‑
erability. This makes integration in Go, or developing Python bindings, possible,
and generally enables integration in many different contexts. The second choice is
to provide integration with the Tree‑sitter parser framework. Tree‑sitter has a big
and active ecosystem with grammar definitions for many languages. By connecting
to something that is widely available and used already, the barrier of entry is lower.
(The fact that GitHub is well known, and the work was presented at developer con‑
ferences, surely helped, but that alone is not enough to make people actually use
something.)

Of course the comparison is to some degree between apples and oranges. Aca‑
demia and industry have different goals and requirements. The relative indepen‑
dence of academic researchers and short‑lived nature of PhD projects, combined with
an insistence on novelty, makes long‑term refinement and practical engineering dif‑
ficult. But the past success of the Spoofax project shows that it is possible to develop
a research culture that does result in long‑lived, practical software that goes beyond
throw‑away prototypes. And some of that work is already happening, for example
by breaking up the monolithic build pipeline (Konat et al., 2018), or developing stand‑
alone frameworks for scope graph based type checkers (Bach Poulsen et al., 2023). I
believe this research culture can evolve and lead to a broader adoption of the work
we do.

Bibliography

Abadi, Martín, Luca Cardelli, Pierre‑Louis Curien, and Jean‑Jacques Lévy (1991). “Explicit Substitutions.”
In: Journal of Functional Programming 1.4, pp. 375–416 (cit. on p. 58).

Agha, Gul A. (1990). ACTORS ‑ a model of concurrent computation in distributed systems. MIT Press series in
artificial intelligence. MIT Press. ISBN: 978‑0‑262‑01092‑4 (cit. on p. 140).

Alblas, Henk (1991). “Attribute Evaluation Methods.” In: Attribute Grammars, Applications and Systems,
International Summer School SAGA, Prague, Czechoslovakia, June 4‑13, 1991, Proceedings. Ed. by Henk
Alblas and Borivoj Melichar. Vol. 545. Lecture Notes in Computer Science. Springer, pp. 48–113. ISBN:
3‑540‑54572‑7 (cit. on p. 120).

Amin, Nada, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro Stucki (2016). “The Essence of
Dependent Object Types.” In: A List of Successes That Can Change the World ‑ Essays Dedicated to Philip
Wadler on the Occasion of His 60th Birthday. Ed. by Sam Lindley, Conor McBride, Philip W. Trinder, and
Donald Sannella. Vol. 9600. Lecture Notes in Computer Science. Springer, pp. 249–272. DOI: 10.1007
/978‑3‑319‑30936‑1_14. (Cit. on p. 66).

Amin, Nada and Tiark Rompf (2017). “Type soundness proofs with definitional interpreters.” In: Proceed‑
ings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris,
France, January 18‑20, 2017. Ed. by Giuseppe Castagna and Andrew D. Gordon. ACM, pp. 666–679.
ISBN: 978‑1‑4503‑4660‑3. (Cit. on p. 66).

Appel, Andrew W. (1998). Modern Compiler Implementation in Java. Cambridge University Press. ISBN: 0‑
521‑58388‑8 (cit. on p. 128).

Astarte, Troy Kaighin (2019). “Formalising Meaning: a History of Programming Language Semantics.”
PhD thesis. Newcastle upon Tyne: Newcastle University (cit. on p. 5).

Baader, Franz and Tobias Nipkow (1998). Term rewriting and all that. Cambridge University Press. ISBN:
978‑0‑521‑45520‑6 (cit. on p. 42).

Bach Poulsen, Casper, Pierre Néron, Andrew P. Tolmach, and Eelco Visser (2016). “Scopes Describe
Frames: A Uniform Model for Memory Layout in Dynamic Semantics.” In: 30th European Conference
on Object‑Oriented Programming, ECOOP 2016, July 18‑22, 2016, Rome, Italy. Ed. by Shriram Krishna‑
murthi and Benjamin S. Lerner. Vol. 56. LIPIcs. Schloss Dagstuhl ‑ Leibniz‑Zentrum fuer Informatik.
DOI: 10.4230/LIPIcs.ECOOP.2016.20 (cit. on pp. 48, 68, 81).

Bach Poulsen, Casper, Arjen Rouvoet, Andrew P. Tolmach, Robbert Krebbers, and Eelco Visser (2018).
“Intrinsically‑typed definitional interpreters for imperative languages.” In: Proceedings of the ACM on
Programming Languages 2.POPL. DOI: 10.1145/3158104. (Cit. on pp. 48, 68, 81, 185).

Bach Poulsen, Casper, Aron Zwaan, and Paul Hübner (2023). “A Monadic Framework for Name Resolu‑
tion in Multi‑phased Type Checkers.” In: Proceedings of the 22nd ACM SIGPLAN International Confer‑
ence on Generative Programming: Concepts and Experiences, GPCE 2023, Cascais, Portugal, October 22‑23,
2023. Ed. by Coen De Roover, Bernhard Rumpe, and Amir Shaikhha. ACM, pp. 14–28. DOI: 10.1145
/3624007.3624051. (Cit. on p. 187).

Backus, John W., Friedrich L. Bauer, Julien Green, C. Katz, John McCarthy, Alan J. Perlis, Heinz Rutishauser,
Klaus Samelson, Bernard Vauquois, Joseph Henry Wegstein, Adriaan van Wijngaarden, and Michael
Woodger (1960). “Report on the algorithmic language ALGOL 60.” In: Communications of the ACM
3.5, pp. 299–314. DOI: 10.1145/367236.367262. (Cit. on p. 4).

https://doi.org/10.1007/978-3-319-30936-1_14
https://doi.org/10.1007/978-3-319-30936-1_14
https://doi.org/10.4230/LIPIcs.ECOOP.2016.20
https://doi.org/10.1145/3158104
https://doi.org/10.1145/3624007.3624051
https://doi.org/10.1145/3624007.3624051
https://doi.org/10.1145/367236.367262

190 Bibliography

Bird, Richard S. (1984). “Using Circular Programs to Eliminate Multiple Traversals of Data.” In: Acta In‑
formatica 21, pp. 239–250 (cit. on p. 121).

Boyland, J. (1996). “Descriptional Composition of Compiler Components.” PhD thesis (cit. on p. 121).
Boyland, John Tang (2005). “Remote attribute grammars.” In: Journal of the ACM 52.4, pp. 627–687. DOI:

10.1145/1082036.1082042. (Cit. on pp. 97, 121).
Brouwer, Jonathan (2023). “Dependently Typed Languages in Statix.” MA thesis. Delft, The Netherlands:

Delft University of Technology. URL: http://resolver.tudelft.nl/uuid:7bf3c0f5‑71fb‑4e08‑bcdb‑1c873c
7e1e63 (cit. on p. 181).

Brzozowski, Janusz A. (1964). “Derivatives of Regular Expressions.” In: Journal of the ACM 11.4, pp. 481–
494 (cit. on pp. 38, 100, 146).

Cardelli, Luca (1988). “Structural Subtyping and the Notion of Power Type.” In: POPL, pp. 70–79 (cit. on
p. 56).

Chandy, K. Mani, Jayadev Misra, and Laura M. Haas (1983). “Distributed Deadlock Detection.” In: ACM
Trans. Comput. Syst. 1.2, pp. 144–156. DOI: 10.1145/357360.357365. (Cit. on p. 149).

Chang, Stephen, Alex Knauth, and Ben Greenman (2017). “Type systems as macros.” In: Proceedings of
the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France,
January 18‑20, 2017. Ed. by Giuseppe Castagna and Andrew D. Gordon. ACM, pp. 694–705. ISBN:
978‑1‑4503‑4660‑3. (Cit. on p. 81).

Coquand, Catarina, Makoto Takeyama, and Dan Synek (2006). “An Emacs‑Interface for Type‑Directed
Supportfor Constructing Proofs and Programs.” In: European Joint Conferences on Theory and Practice
of Software, ENTCS. Vol. 2 (cit. on p. 175).

Creager, Douglas A. and Hendrik van Antwerpen (2023). “Stack Graphs: Name Resolution at Scale.”
In: Eelco Visser Commemorative Symposium (EVCS 2023). Ed. by Ralf Lämmel, Peter D. Mosses, and
Friedrich Steimann. Vol. 109. Open Access Series in Informatics (OASIcs). Dagstuhl, Germany: Schloss
Dagstuhl – Leibniz‑Zentrum für Informatik, 8:1–8:12. DOI: 10.4230/OASIcs.EVCS.2023.8. (Cit. on
pp. 184, 186, 202).

Damas, Luís and Robin Milner (1982). “Principal Type‑Schemes for Functional Programs.” In: POPL,
pp. 207–212 (cit. on p. 82).

De Souza Amorim, Luis Eduardo, Sebastian Erdweg, Guido Wachsmuth, and Eelco Visser (2016). “Princi‑
pled syntactic code completion using placeholders.” In: Proceedings of the 2016 ACM SIGPLAN Interna‑
tional Conference on Software Language Engineering, Amsterdam, The Netherlands, October 31 ‑ November
1, 2016. Ed. by Tijs van der Storm, Emilie Balland, and Dániel Varró. ACM, pp. 163–175. DOI: 10.1145
/2997364.2997374. (Cit. on pp. 169, 175).

ECMA International (2017). Standard ECMA‑334: C# Language Specification, 5th edition. URL: https://www
.ecma‑international.org/publications‑and‑standards/standards/ecma‑334/ (cit. on p. 4).

Ekman, Torbjörn and Görel Hedin (2006). “Modular Name Analysis for Java Using JastAdd.” In:Generative
and Transformational Techniques in Software Engineering, International Summer School, GTTSE 2005, Braga,
Portugal, July 4‑8, 2005. Revised Papers. Ed. by Ralf Lämmel, João Saraiva, and Joost Visser. Vol. 4143.
Lecture Notes in Computer Science. Springer, pp. 422–436. DOI: 10.1007/11877028_18. (Cit. on pp. 45,
81, 82, 121).

— (2007a). “The JastAdd extensible Java compiler.” In: Proceedings of the 22nd Annual ACM SIGPLAN
Conference onObject‑Oriented Programming, Systems, Languages, andApplications, OOPSLA 2007, October
21‑25, 2007, Montreal, Quebec, Canada. Ed. by Richard P. Gabriel, David F. Bacon, Cristina Videira
Lopes, and Guy L. Steele Jr. ACM, pp. 1–18. DOI: 10.1145/1297027.1297029. (Cit. on pp. 45, 81, 121).

— (2007b). “The JastAdd system ‑ modular extensible compiler construction.” In: Science of Computer
Programming 69.1‑3, pp. 14–26. DOI: 10.1016/j.scico.2007.02.003. (Cit. on p. 121).

https://doi.org/10.1145/1082036.1082042
http://resolver.tudelft.nl/uuid:7bf3c0f5-71fb-4e08-bcdb-1c873c7e1e63
http://resolver.tudelft.nl/uuid:7bf3c0f5-71fb-4e08-bcdb-1c873c7e1e63
https://doi.org/10.1145/357360.357365
https://doi.org/10.4230/OASIcs.EVCS.2023.8
https://doi.org/10.1145/2997364.2997374
https://doi.org/10.1145/2997364.2997374
https://www.ecma-international.org/publications-and-standards/standards/ecma-334/
https://www.ecma-international.org/publications-and-standards/standards/ecma-334/
https://doi.org/10.1007/11877028_18
https://doi.org/10.1145/1297027.1297029
https://doi.org/10.1016/j.scico.2007.02.003

Bibliography 191

Ellison III, Charles M. (2008). “A Rewriting Logic Approach to Defining Type Systems.” MA thesis. Uni‑
versity of Illinois at Urbana‑Champaign. URL: http://hdl.handle.net/2142/18078 (cit. on p. 81).

Erdweg, Sebastian, Oliver Bracevac, Edlira Kuci, Matthias Krebs, and Mira Mezini (2015). “A co‑contextual
formulation of type rules and its application to incremental type checking.” In: Proceedings of the 2015
ACM SIGPLAN International Conference on Object‑Oriented Programming, Systems, Languages, and Appli‑
cations. Ed. by Jonathan Aldrich and Patrick Eugster. ACM, pp. 880–897. DOI: 10.1145/2814270.28142
77. (Cit. on pp. 44, 184).

Erdweg, Sebastian, Moritz Lichter, and Manuel Weiel (2015). “A sound and optimal incremental build
system with dynamic dependencies.” In:Proceedings of the 2015ACMSIGPLAN International Conference
on Object‑Oriented Programming, Systems, Languages, and Applications. Ed. by Jonathan Aldrich and
Patrick Eugster. ACM, pp. 89–106. DOI: 10.1145/2814270.2814316. (Cit. on p. 155).

Erdweg, Sebastian, Tijs van der Storm, Markus Völter, Meinte Boersma, Remi Bosman, William R. Cook,
Albert Gerritsen, Angelo Hulshout, Steven Kelly, Alex Loh, Gabriël Konat, Pedro J. Molina, Martin
Palatnik, Risto Pohjonen, Eugen Schindler, Klemens Schindler, Riccardo Solmi, Vlad A. Vergu, Eelco
Visser, Kevin van der Vlist, Guido Wachsmuth, and Jimi van der Woning (2013). “The State of the
Art in Language Workbenches ‑ Conclusions from the Language Workbench Challenge.” In: Software
Language Engineering ‑ 6th International Conference, SLE 2013, Indianapolis, IN, USA, October 26‑28, 2013.
Proceedings. Ed. by Martin Erwig, Richard F. Paige, and Eric Van Wyk. Vol. 8225. Lecture Notes in
Computer Science. Springer, pp. 197–217. DOI: 10.1007/978‑3‑319‑02654‑1_11. (Cit. on pp. 160, 161,
174).

Erdweg, Sebastian, Tijs van der Storm, Markus Völter, Laurence Tratt, Remi Bosman, William R. Cook,
Albert Gerritsen, Angelo Hulshout, Steven Kelly, Alex Loh, Gabriël Konat, Pedro J. Molina, Martin
Palatnik, Risto Pohjonen, Eugen Schindler, Klemens Schindler, Riccardo Solmi, Vlad A. Vergu, Eelco
Visser, Kevin van der Vlist, Guido Wachsmuth, and Jimi van der Woning (2015). “Evaluating and
comparing language workbenches: Existing results and benchmarks for the future.” In: Computer Lan‑
guages, Systems & Structures 44, pp. 24–47. DOI: 10.1016/j.cl.2015.08.007. (Cit. on pp. 7, 17).

Eysholdt, M. and H. Behrens (2010). “Xtext: implement your language faster than the quick and dirty way.”
In: Proceedings of the ACM international conference companion on Object oriented programming systems
languages and applications companion. ACM, pp. 307–309 (cit. on p. 174).

Felleisen, Matthias, Robby Findler, and Matthew Flatt (2009). Semantics Engineering with PLT Redex. MIT
Press. ISBN: 978‑0‑262‑06275‑6. (Cit. on p. 81).

Fetscher, Burke, Koen Claessen, Michal H. Palka, John Hughes, and Robby Findler (2015). “Making Ran‑
dom Judgments: Automatically Generating Well‑Typed Terms from the Definition of a Type‑System.”
In: Programming Languages and Systems ‑ 24th European Symposium on Programming, ESOP 2015, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April
11‑18, 2015. Proceedings. Ed. by Jan Vitek. Vol. 9032. Lecture Notes in Computer Science. Springer,
pp. 383–405. DOI: 10.1007/978‑3‑662‑46669‑8_16. (Cit. on p. 81).

Flatt, Matthew (2016). “Binding as sets of scopes.” In: Proceedings of the 43rd Annual ACM SIGPLAN‑
SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA,
January 20 ‑ 22, 2016. Ed. by Rastislav Bodik and Rupak Majumdar. ACM, pp. 705–717. DOI: 10.1145
/2837614.2837620. (Cit. on p. 81).

Fowler, Martin (2005). Language Workbenches: The Killer‑App for Domain Specific Languages? URL: http://w
ww.martinfowler.com/articles/languageWorkbench.html (cit. on pp. 7, 160).

Frühwirth, Thom (2009). Constraint Handling Rules. Cambridge University Press. ISBN: 978‑0‑521‑87776‑3
(cit. on p. 82).

Frühwirth, Thom and Pascal Brisset (1995). High‑Level Implementations of Constraint Handling Rules. Tech‑
nical Report ECRC‑TR‑95‑20 (cit. on p. 74).

http://hdl.handle.net/2142/18078
https://doi.org/10.1145/2814270.2814277
https://doi.org/10.1145/2814270.2814277
https://doi.org/10.1145/2814270.2814316
https://doi.org/10.1007/978-3-319-02654-1_11
https://doi.org/10.1016/j.cl.2015.08.007
https://doi.org/10.1007/978-3-662-46669-8_16
https://doi.org/10.1145/2837614.2837620
https://doi.org/10.1145/2837614.2837620
http://www.martinfowler.com/articles/languageWorkbench.html
http://www.martinfowler.com/articles/languageWorkbench.html

192 Bibliography

Frühwirth, Thom W. (1998). “Theory and Practice of Constraint Handling Rules.” In: Journal of Logic and
Algebraic Programming 37.1‑3, pp. 95–138 (cit. on p. 119).

GCC (n.d.). The Parallel GCC. URL: https://gcc.gnu.org/wiki/ParallelGcc (cit. on p. 125).
Girard, Jean‑Yves (1972). “Interprétation fonctionnelle et élimination des coupures de l’arithmétique

d’ordre supérieur.” French. PhD thesis. Université Paris 7 (cit. on pp. 49, 50).
Go (n.d.). Go 1.9: Parallel Compilation. URL: https://golang.org/doc/go1.9#parallel‑compile (cit. on p. 154).
Gosling, James, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley, and Daniel Smith (2018).The Java Language

Specification, Java SE 11 Edition (cit. on p. 4).
Hatch, William Gallard, Pierce Darragh, Sorawee Porncharoenwase, Guy Watson, and Eric Eide (2023).

“Generating Conforming Programs with Xsmith.” In: Proceedings of the 22nd ACM SIGPLAN Inter‑
national Conference on Generative Programming: Concepts and Experiences, GPCE 2023, Cascais, Portugal,
October 22‑23, 2023. Ed. by Coen De Roover, Bernhard Rumpe, and Amir Shaikhha. ACM, pp. 86–99.
DOI: 10.1145/3624007.3624056. (Cit. on p. 185).

Hedin, Görel (2000). “Reference Attributed Grammars.” In: Informatica (Slovenia) 24.3, pp. 301–317 (cit. on
pp. 45, 93, 121).

— (2009). “An Introductory Tutorial on JastAdd Attribute Grammars.” In:Generative and Transformational
Techniques in Software Engineering III ‑ International Summer School, GTTSE 2009, Braga, Portugal, July
6‑11, 2009. Revised Papers. Ed. by Joao M. Fernandes, Ralf Lämmel, Joost Visser, and João Saraiva.
Vol. 6491. Lecture Notes in Computer Science. Springer, pp. 166–200. DOI: 10.1007/978‑3‑642‑18023‑
1_4. (Cit. on p. 81).

Heeren, Bastiaan, Jurriaan Hage, and S. Doaitse Swierstra (2003). “Scripting the type inference process.”
In: Proceedings of the Eighth ACM SIGPLAN International Conference on Functional Programming, ICFP
2003, Uppsala, Sweden, August 25‑29, 2003. Ed. by Colin Runciman and Olin Shivers. ACM, pp. 3–13.
DOI: 10.1145/944705.944707. (Cit. on p. 46).

Helm, Dominik, Florian Kübler, Jan Thomas Kölzer, Philipp Haller, Michael Eichberg, Guido Salvaneschi,
and Mira Mezini (2020). “A programming model for semi‑implicit parallelization of static analyses.”
In: ISSTA ’20: 29th ACM SIGSOFT International Symposium on Software Testing and Analysis, Virtual
Event, USA, July 18‑22, 2020. Ed. by Sarfraz Khurshid and Corina S. Pasareanu. ACM, pp. 428–439.
DOI: 10.1145/3395363.3397367. (Cit. on p. 156).

Hindley, Roger (1969). “The Principal Type‑Scheme of an Object in Combinatory Logic.” In: Trans. Amer.
Math. Soc 146. DOI: 10.2307/1995158 (cit. on p. 82).

Igarashi, Atsushi, Benjamin C. Pierce, and Philip Wadler (2001). “Featherweight Java: a minimal core cal‑
culus for Java and GJ.” In: ACM Transactions on Programming Languages and Systems 23.3, pp. 396–450.
DOI: 10.1145/503502.503505. (Cit. on pp. 49, 50, 60, 63, 64, 81).

Johnsson, Thomas (1987). “Attribute grammars as a functional programming paradigm.” In: Functional
Programming Languages and Computer Architecture, Portland, Oregon, USA, September 14‑16, 1987, Pro‑
ceedings. Ed. by Gilles Kahn. Vol. 274. Lecture Notes in Computer Science. Springer, pp. 154–173. DOI:
10.1007/3‑540‑18317‑5_10. (Cit. on p. 121).

Kastens, Uwe and William M. Waite (1991). “An Abstract Data Type for Name Analysis.” In: Acta Infor‑
matica 28.6, pp. 539–558. DOI: 10.1007/BF01463944 (cit. on p. 45).

Kats, Lennart C. L., Rob Vermaas, and Eelco Visser (2011). “Testing domain‑specific languages.” In: Com‑
panion to the 26th Annual ACM SIGPLAN Conference on Object‑Oriented Programming, Systems, Lan‑
guages, and Applications, OOPSLA 2011, part of SPLASH 2011, Portland, OR, USA, October 22 ‑ 27, 2011.
Ed. by Cristina Videira Lopes and Kathleen Fisher. ACM, pp. 25–26. DOI: 10.1145/2048147.2048160.
(Cit. on p. 78).

Kats, Lennart C. L. and Eelco Visser (2010). “The Spoofax language workbench: rules for declarative speci‑
fication of languages and IDEs.” In: Proceedings of the 25th Annual ACM SIGPLAN Conference on Object‑

https://gcc.gnu.org/wiki/ParallelGcc
https://golang.org/doc/go1.9#parallel-compile
https://doi.org/10.1145/3624007.3624056
https://doi.org/10.1007/978-3-642-18023-1_4
https://doi.org/10.1007/978-3-642-18023-1_4
https://doi.org/10.1145/944705.944707
https://doi.org/10.1145/3395363.3397367
https://doi.org/10.2307/1995158
https://doi.org/10.1145/503502.503505
https://doi.org/10.1007/3-540-18317-5_10
https://doi.org/10.1007/BF01463944
https://doi.org/10.1145/2048147.2048160

Bibliography 193

Oriented Programming, Systems, Languages, and Applications, OOPSLA 2010. Ed. by William R. Cook,
Siobhán Clarke, and Martin C. Rinard. Reno/Tahoe, Nevada: ACM, pp. 444–463. DOI: 10.1145/18694
59.1869497. (Cit. on pp. 7, 9, 13, 43, 44, 78, 156, 174, 186).

Keuchel, Steven, Stephanie Weirich, and Tom Schrijvers (2016). “Needle & Knot: Binder Boilerplate Tied
Up.” In: Programming Languages and Systems ‑ 25th European Symposium on Programming, ESOP 2016,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven,
The Netherlands, April 2‑8, 2016, Proceedings. Ed. by Peter Thiemann. Vol. 9632. Lecture Notes in Com‑
puter Science. Springer, pp. 419–445. DOI: 10.1007/978‑3‑662‑49498‑1_17. (Cit. on p. 80).

Knuth, Donald E. (1968). “Semantics of Context‑Free Languages.” In: Theory Comput. Syst. 2.2, pp. 127–145.
DOI: 10.1007/BF01692511. (Cit. on pp. 6, 45).

Knuth, Donald E. and Luis Trabb Pardo (1980). “The Early Development of Programming Languages.”
In: A History of Computing in the Twentieth Century. San Diego: Academic Press, pp. 197–273. DOI:
10.1016/B978‑0‑12‑491650‑0.50019‑8. (Cit. on p. 1).

Konat, Gabriël, Sebastian Erdweg, and Eelco Visser (2018). “Scalable incremental building with dynamic
task dependencies.” In: Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering. Ed. by Marianne Huchard, Christian Kästner, and Gordon Fraser. ACM, pp. 76–86. DOI:
10.1145/3238147.3238196. (Cit. on pp. 155, 187).

Konat, Gabriël, Lennart C. L. Kats, Guido Wachsmuth, and Eelco Visser (2012). “Declarative Name Binding
and Scope Rules.” In: Software Language Engineering, 5th International Conference, SLE 2012, Dresden,
Germany, September 26‑28, 2012, Revised Selected Papers. Ed. by Krzysztof Czarnecki and Görel Hedin.
Vol. 7745. Lecture Notes in Computer Science. Springer, pp. 311–331. DOI: 10.1007/978‑3‑642‑36089‑
3_18. (Cit. on pp. 19, 43, 156, 175).

Kulkarni, Milind, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan, Kavita Bala, and L. Paul Chew
(2007). “Optimistic parallelism requires abstractions.” In: Proceedings of the ACM SIGPLAN 2007 Con‑
ference on Programming Language Design and Implementation, San Diego, California, USA, June 10‑13, 2007.
Ed. by Jeanne Ferrante and Kathryn S. McKinley. ACM, pp. 211–222. DOI: 10.1145/1250734.1250759.
(Cit. on p. 156).

Kuper, Lindsey, Aaron Turon, Neelakantan R. Krishnaswami, and Ryan R. Newton (2014). “Freeze after
writing: quasi‑deterministic parallel programming with LVars.” In: The 41st Annual ACM SIGPLAN‑
SIGACT Symposium on Principles of Programming Languages, POPL ’14, San Diego, CA, USA, January
20‑21, 2014. Ed. by Suresh Jagannathan and Peter Sewell. ACM, pp. 257–270. DOI: 10.1145/2535838.2
535842. (Cit. on p. 155).

Lampropoulos, Leonidas, Diane Gallois‑Wong, Catalin Hritcu, John Hughes, Benjamin C. Pierce, and Li‑
yao Xia (2017). “Beginner’s luck: a language for property‑based generators.” In: Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January
18‑20, 2017. Ed. by Giuseppe Castagna and Andrew D. Gordon. ACM, pp. 114–129. DOI: 10.1145/300
9837.3009868. (Cit. on p. 81).

Loncaric, Calvin, Satish Chandra 0001, Cole Schlesinger, and Manu Sridharan (2016). “A practical frame‑
work for type inference error explanation.” In: Proceedings of the 2016 ACM SIGPLAN International
Conference on Object‑Oriented Programming, Systems, Languages, and Applications, OOPSLA 2016, part
of SPLASH 2016, Amsterdam, The Netherlands, October 30 ‑ November 4, 2016. Ed. by Eelco Visser and
Yannis Smaragdakis. ACM, pp. 781–799. DOI: 10.1145/2983990.2983994. (Cit. on p. 185).

Magnusson, Eva, Torbjörn Ekman, and Görel Hedin (2009). “Demand‑driven evaluation of collection at‑
tributes.” In: Automated Software Engineering 16.2, pp. 291–322. DOI: 10.1007/s10515‑009‑0046‑z. (Cit.
on p. 122).

Magnusson, Eva and Görel Hedin (2003). “Circular Reference Attributed Grammars ‑ Their Evaluation
and Applications.” In: Electronic Notes in Theoretical Computer Science 82.3, pp. 532–554. DOI: 10.1016
/S1571‑0661(05)82627‑1. (Cit. on p. 123).

https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1007/978-3-662-49498-1_17
https://doi.org/10.1007/BF01692511
https://doi.org/10.1016/B978-0-12-491650-0.50019-8
https://doi.org/10.1145/3238147.3238196
https://doi.org/10.1007/978-3-642-36089-3_18
https://doi.org/10.1007/978-3-642-36089-3_18
https://doi.org/10.1145/1250734.1250759
https://doi.org/10.1145/2535838.2535842
https://doi.org/10.1145/2535838.2535842
https://doi.org/10.1145/3009837.3009868
https://doi.org/10.1145/3009837.3009868
https://doi.org/10.1145/2983990.2983994
https://doi.org/10.1007/s10515-009-0046-z
https://doi.org/10.1016/S1571-0661(05)82627-1
https://doi.org/10.1016/S1571-0661(05)82627-1

194 Bibliography

Matthews, David C. J. and Makarius Wenzel (2010). “Efficient parallel programming in Poly/ML and Is‑
abelle/ML.” In: Proceedings of the POPL 2010 Workshop on Declarative Aspects of Multicore Programming,
DAMP 2010, Madrid, Spain, January 19, 2010. Ed. by Leaf Petersen and Enrico Pontelli. ACM, pp. 53–62.
DOI: 10.1145/1708046.1708058. (Cit. on p. 155).

Mens, Tom, Serge Demeyer, Bart Du Bois, Hans Stenten, and Pieter Van Gorp (2003). “Refactoring: Current
Research and Future Trends.” In: Electronic Notes in Theoretical Computer Science 82.3, pp. 483–499. DOI:
10.1016/S1571‑0661(05)82624‑6. (Cit. on p. 159).

Mensing, Adrian D., Hendrik van Antwerpen, Casper Bach Poulsen, and Eelco Visser (2019). “From defini‑
tional interpreter to symbolic executor.” In:Proceedings of the 4thACMSIGPLAN InternationalWorkshop
on Meta‑Programming Techniques and Reflection. META 2019. Athens, Greece: Association for Comput‑
ing Machinery, pp. 11–20. DOI: 10.1145/3358502.3361269 (cit. on p. 202).

Milner, Robin (1978). “A Theory of Type Polymorphism in Programming.” In: J. Comput. Syst. Sci. 17.3,
pp. 348–375. DOI: 10.1016/0022‑0000(78)90014‑4 (cit. on pp. 44, 82).

Milner, Robin, Mads Tofte, Robert Harper, and David MacQueen (1997). The Definition of Standard ML,
Revised. Cambridge, MA, USA: MIT Press. ISBN: 978‑0‑262‑28700‑5 (cit. on pp. 5, 6, 93).

Moss, J. Eliot B. (1986). “Getting the Operating System Out of the Way.” In: IEEEData Eng. Bull. 9.3, pp. 35–
42. URL: http://sites.computer.org/debull/86SEP‑CD.pdf (cit. on p. 119).

Mulligan, Dominic P., Scott Owens, Kathryn E. Gray, Tom Ridge, and Peter Sewell (2014). “Lem: reusable
engineering of real‑world semantics.” In: Proceedings of the 19th ACM SIGPLAN international conference
on Functional programming, Gothenburg, Sweden, September 1‑3, 2014. Ed. by Johan Jeuring and Manuel
M. T. Chakravarty. ACM, pp. 175–188. DOI: 10.1145/2628136.2628143. (Cit. on p. 80).

Murphy, Gail C., Mik Kersten, and Leah Findlater (2006). “How Are Java Software Developers Using the
Eclipse IDE?” In: IEEE Software 23.4, pp. 76–83. DOI: 10.1109/MS.2006.105. (Cit. on p. 159).

Néron, Pierre, Andrew P. Tolmach, Eelco Visser, and Guido Wachsmuth (2015). “A Theory of Name Res‑
olution.” In: Programming Languages and Systems ‑ 24th European Symposium on Programming, ESOP
2015, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015, Lon‑
don, UK, April 11‑18, 2015. Proceedings. Ed. by Jan Vitek. Vol. 9032. Lecture Notes in Computer Science.
Springer, pp. 205–231. DOI: 10.1007/978‑3‑662‑46669‑8_9. (Cit. on pp. xi, xiii, 7, 11, 17–20, 33, 36, 43,
44, 48, 50, 51, 68, 90, 95, 100, 120, 126, 129, 156, 163, 179).

Newton, Ryan R., Ömer S. Agacan, Peter P. Fogg, and Sam Tobin‑Hochstadt (2016). “Parallel type‑
checking with haskell using saturating LVars and stream generators.” In: Proceedings of the 21st ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP 2016, Barcelona, Spain,
March 12‑16, 2016. Ed. by Rafael Asenjo 0001 and Tim Harris. ACM, p. 6. DOI: 10.1145/2851141.2851
142. (Cit. on p. 155).

O’Hearn, Peter W., John C. Reynolds, and Hongseok Yang (2001). “Local Reasoning about Programs that
Alter Data Structures.” In: Computer Science Logic, 15th International Workshop, CSL 2001. 10th Annual
Conference of the EACSL, Paris, France, September 10‑13, 2001, Proceedings. Ed. by Laurent Fribourg.
Vol. 2142. Lecture Notes in Computer Science. Springer, pp. 1–19. DOI: 10.1007/3‑ 540‑ 44802‑ 0_1.
(Cit. on p. 101).

Odersky, Martin, Philippe Altherr, Vincent Cremet, Gilles Dubochet, Burak Emir, Philipp Haller, Stéphane
Micheloud, Nikolay Mihaylov, Adriaan Moors, Lukas Rytz, Michel Schinz, Erik Stenman, and
Matthias Zenger (2019). Scala Language Specification: Version 2.13. URL: https : / /www.scala ‑ lang .o
rg/files/archive/spec/2.13/ (cit. on p. 4).

Odersky, Martin, Martin Sulzmann, and Martin Wehr (1999). “Type Inference with Constrained Types.”
In: TAPOS 5.1, pp. 35–55 (cit. on pp. 82, 120).

Odersky, Martin, Christoph Zenger, and Matthias Zenger (2001). “Colored local type inference.” In: Pro‑
ceedings of the 28th ACM SIGPLAN‑SIGACT Symposium on Principles of Programming Languages. POPL.
Association for Computing Machinery, pp. 41–53. DOI: 10.1145/360204.360207. (Cit. on p. 82).

https://doi.org/10.1145/1708046.1708058
https://doi.org/10.1016/S1571-0661(05)82624-6
https://doi.org/10.1145/3358502.3361269
https://doi.org/10.1016/0022-0000(78)90014-4
http://sites.computer.org/debull/86SEP-CD.pdf
https://doi.org/10.1145/2628136.2628143
https://doi.org/10.1109/MS.2006.105
https://doi.org/10.1007/978-3-662-46669-8_9
https://doi.org/10.1145/2851141.2851142
https://doi.org/10.1145/2851141.2851142
https://doi.org/10.1007/3-540-44802-0_1
https://www.scala-lang.org/files/archive/spec/2.13/
https://www.scala-lang.org/files/archive/spec/2.13/
https://doi.org/10.1145/360204.360207

Bibliography 195

Omar, Cyrus, Ian Voysey, Michael Hilton, Jonathan Aldrich, and Matthew A. Hammer (2017). “Hazelnut:
a bidirectionally typed structure editor calculus.” In: Proceedings of the 44th ACMSIGPLAN Symposium
on Principles of Programming Languages, POPL 2017, Paris, France, January 18‑20, 2017. Ed. by Giuseppe
Castagna and Andrew D. Gordon. ACM, pp. 86–99. DOI: 10.1145/3009837.3009900. (Cit. on p. 175).

Omar, Cyrus, Ian Voysey, Michael Hilton, Joshua Sunshine, Claire Le Goues, Jonathan Aldrich, and
Matthew A. Hammer (2017). “Toward Semantic Foundations for Program Editors.” In: 2nd Sum‑
mit on Advances in Programming Languages, SNAPL 2017, May 7‑10, 2017, Asilomar, CA, USA. Ed. by
Benjamin S. Lerner, Rastislav Bodík, and Shriram Krishnamurthi. Vol. 71. LIPIcs. Schloss Dagstuhl ‑
Leibniz‑Zentrum fuer Informatik. DOI: 10.4230/LIPIcs.SNAPL.2017.11. (Cit. on pp. 160, 174).

OpenJDK (n.d.). Java Microbenchmark Harness (JMH). URL: https://openjdk.java.net/projects/code‑tools/j
mh/ (cit. on p. 151).

Öqvist, Jesper and Görel Hedin (2017). “Concurrent circular reference attribute grammars.” In: Proceedings
of the 10th ACM SIGPLAN International Conference on Software Language Engineering, SLE 2017, Vancou‑
ver, BC, Canada, October 23‑24, 2017. Ed. by Benoît Combemale, Marjan Mernik, and Bernhard Rumpe.
ACM, pp. 151–162. DOI: 10.1145/3136014.3136032. (Cit. on p. 155).

Palsberg, Jens and Michael I. Schwartzbach (1991). “Object‑Oriented Type Inference.” In: OOPSLA,
pp. 146–161 (cit. on p. 44).

— (1994). Object‑oriented type systems. Wiley professional computing. Wiley. ISBN: 978‑0‑471‑94128‑6 (cit.
on p. 44).

Pavlinovic, Zvonimir, Tim King, and Thomas Wies (2014). “Finding minimum type error sources.” In:
Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages
& Applications, OOPSLA 2014, part of SPLASH 2014, Portland, OR, USA, October 20‑24, 2014. Ed. by
Andrew P. Black and Todd D. Millstein. ACM, pp. 525–542. DOI: 10.1145/2660193.2660230. (Cit. on
p. 185).

Pelsmaeker, Daniel A. A., Hendrik van Antwerpen, and Eelco Visser (2019). “Towards Language‑Para‑
metric Semantic Editor Services Based on Declarative Type System Specifications (Brave New Idea
Paper).” In: 33rd European Conference on Object‑Oriented Programming (ECOOP 2019). Ed. by Alastair F.
Donaldson. Vol. 134. LIPIcs. Dagstuhl, Germany: Schloss Dagstuhl – Leibniz‑Zentrum für Informatik.
DOI: 10.4230/LIPIcs.ECOOP.2019.26 (cit. on pp. 12, 122, 159, 201).

Pelsmaeker, Daniël A. A., Hendrik van Antwerpen, Casper Bach Poulsen, and Eelco Visser (2022). “Lan‑
guage‑parametric static semantic code completion.” In: Proceedings of the ACM on Programming Lan‑
guages 6.OOPSLA, pp. 1–30. DOI: 10.1145/3527329. (Cit. on pp. 181, 185, 202).

Pierce, Benjamin C. (2002). Types and Programming Languages. Cambridge, Massachusetts: MIT Press (cit.
on pp. 47, 49, 50, 56, 58, 60, 68).

Pierce, Benjamin C. and David N. Turner (2000). “Local type inference.” In: ACM Transactions on Program‑
ming Languages and Systems 22.1, pp. 1–44. DOI: 10.1145/345099.345100. (Cit. on p. 82).

Pottier, François and Diddier Rémy (2005). “The Essence of ML Type Inference.” In: Advanced Topics in
Types and Programming Languages. Ed. by Benjamin C. Pierce. The MIT Press, pp. 389–489. ISBN: 0‑262‑
16228‑8 (cit. on pp. 72, 82, 120).

Reali, Patrik (2000). “Structuring a Compiler with Active Objects.” In: Modular Programming Languages,
Joint Modular Languages Conference, JMLC 2000, Zurich, Switzerland, September 6‑8, 2000, Proceedings.
Ed. by Jürg Gutknecht and Wolfgang Weck. Vol. 1897. Lecture Notes in Computer Science. Springer,
pp. 250–262. DOI: 10.1007/10722581_20 (cit. on p. 154).

Reynolds, John C. (1974). “Towards a theory of type structure.” In: Programming Symposium, Proceedings
Colloque sur la Programmation, Paris, France, April 9‑11, 1974. Ed. by Bernard Robinet. Vol. 19. Lecture
Notes in Computer Science. Springer, pp. 408–423. DOI: 10.1007/3‑540‑06859‑7_148 (cit. on pp. 49,
50).

https://doi.org/10.1145/3009837.3009900
https://doi.org/10.4230/LIPIcs.SNAPL.2017.11
https://openjdk.java.net/projects/code-tools/jmh/
https://openjdk.java.net/projects/code-tools/jmh/
https://doi.org/10.1145/3136014.3136032
https://doi.org/10.1145/2660193.2660230
https://doi.org/10.4230/LIPIcs.ECOOP.2019.26
https://doi.org/10.1145/3527329
https://doi.org/10.1145/345099.345100
https://doi.org/10.1007/10722581_20
https://doi.org/10.1007/3-540-06859-7_148

196 Bibliography

Robillard, Martin P., Wesley Coelho, and Gail C. Murphy (2004). “How Effective Developers Investigate
Source Code: An Exploratory Study.” In: IEEE Trans. Software Eng. 30.12, pp. 889–903. DOI: 10.1109
/TSE.2004.101. (Cit. on p. 159).

Rodriguez, Jonathan and Ondrej Lhoták (2011). “Actor‑Based Parallel Dataflow Analysis.” In: Compiler
Construction ‑ 20th International Conference, CC 2011, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2011, Saarbrücken, Germany, March 26‑April 3, 2011. Proceedings.
Ed. by Jens Knoop. Vol. 6601. Lecture Notes in Computer Science. Springer, pp. 179–197. DOI: 10.10
07/978‑3‑642‑19861‑8_11. (Cit. on p. 156).

Rosu, Grigore and Traian‑Florin Serbanuta (2010). “An overview of the K semantic framework.” In: Journal
of Logic and Algebraic Programming 79.6, pp. 397–434. DOI: 10.1016/j.jlap.2010.03.012. (Cit. on p. 81).

Rouvoet, Arjen, Hendrik van Antwerpen, Casper Bach Poulsen, Robbert Krebbers, and Eelco Visser
(2020a). “Knowing when to ask: sound scheduling of name resolution in type checkers derived from
declarative specifications.” In: Proceedings of the ACM on Programming Languages 4.OOPSLA. DOI:
10.1145/3428248 (cit. on pp. 12, 87, 126, 127, 129, 131, 132, 140, 151, 153, 156, 202).

Rouvoet, Arjen, Hendrik van Antwerpen, Casper Bach Poulsen, Robbert Krebbers, and Eelco Visser
(2020b). Knowing When to Ask: Artifact. Version 1.0. DOI: 10.5281/zenodo.4068065. (Cit. on p. 117).

— (2020c). “Knowing When to Ask: Sound scheduling of name resolution in type checkers derived from
declarative specifications (Extended Version).” In: Zenodo. DOI: 10.5281/zenodo.4091445. (Cit. on
pp. 90, 104, 105, 108, 116, 118).

Rust (n.d.). Parallel Compilation. URL: https://rustc‑dev‑guide.rust‑ lang.org/parallel‑ rustc.html (cit. on
p. 154).

Sasaki, Akira and Masataka Sassa (2003). “Circular Attribute Grammars with Remote Attribute References
and their Evaluators.” In: New Generation Comput. 22.1, pp. 37–60. DOI: 10.1007/BF03037280. (Cit. on
p. 123).

Schäfer, Max and Oege de Moor (2010). “Specifying and implementing refactorings.” In: Proceedings of the
25th Annual ACM SIGPLAN Conference on Object‑Oriented Programming, Systems, Languages, and Appli‑
cations, OOPSLA 2010. Ed. by William R. Cook, Siobhán Clarke, and Martin C. Rinard. Reno/Tahoe,
Nevada: ACM, pp. 286–301. DOI: 10.1145/1869459.1869485. (Cit. on p. 160).

Schäfer, Max, Andreas Thies, Friedrich Steimann, and Frank Tip (2012). “A Comprehensive Approach to
Naming and Accessibility in Refactoring Java Programs.” In: IEEE Trans. Software Eng. 38.6, pp. 1233–
1257. DOI: 10.1109/TSE.2012.13. (Cit. on p. 160).

Schäfer, Steven, Tobias Tebbi, and Gert Smolka (2015). “Autosubst: Reasoning with de Bruijn Terms and
Parallel Substitutions.” In: Interactive Theorem Proving ‑ 6th International Conference, ITP 2015, Nanjing,
China, August 24‑27, 2015, Proceedings. Ed. by Christian Urban and Xingyuan Zhang. Vol. 9236. Lecture
Notes in Computer Science. Springer, pp. 359–374. DOI: 10.1007/978‑3‑319‑22102‑1_24. (Cit. on p. 80).

Seshadri, V., S. Weber, D. B. Wortman, C. P. Yu, and I. Small (1988). “Semantic analysis in a concurrent
compiler.” In: Proceedings of the ACM SIGPLAN 1988 Conference on Programming Language Design and
Implementation. PLDI ’88. Atlanta, Georgia, USA: Association for Computing Machinery, pp. 233–240.
DOI: 10.1145/53990.54013. (Cit. on p. 129).

Sewell, Peter, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge, Susmit Sarkar, and
Rok Strnisa (2010). “Ott: Effective tool support for the working semanticist.” In: Journal of Functional
Programming 20.1, pp. 71–122. DOI: 10.1017/S0956796809990293. (Cit. on p. 80).

Shao, Zhong and Andrew W. Appel (1993). “Smartest Recompilation.” In: Proceedings of the 20th ACM
SIGPLAN‑SIGACT Symposium on Principles of Programming Languages, pp. 439–450. DOI: 10.1145/158
511.158702 (cit. on p. 126).

Simonet, Vincent and François Pottier (2007). “A constraint‑based approach to guarded algebraic data
types.” In: ACM Transactions on Programming Languages and Systems 29.1, p. 1. DOI: 10.1145/1180475
.1180476. (Cit. on p. 82).

https://doi.org/10.1109/TSE.2004.101
https://doi.org/10.1109/TSE.2004.101
https://doi.org/10.1007/978-3-642-19861-8_11
https://doi.org/10.1007/978-3-642-19861-8_11
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1145/3428248
https://doi.org/10.5281/zenodo.4068065
https://doi.org/10.5281/zenodo.4091445
https://rustc-dev-guide.rust-lang.org/parallel-rustc.html
https://doi.org/10.1007/BF03037280
https://doi.org/10.1145/1869459.1869485
https://doi.org/10.1109/TSE.2012.13
https://doi.org/10.1007/978-3-319-22102-1_24
https://doi.org/10.1145/53990.54013
https://doi.org/10.1017/S0956796809990293
https://doi.org/10.1145/158511.158702
https://doi.org/10.1145/158511.158702
https://doi.org/10.1145/1180475.1180476
https://doi.org/10.1145/1180475.1180476

Bibliography 197

Söderberg, Emma and Görel Hedin (2011). “Building semantic editors using JastAdd: tool demonstration.”
In: Language Descriptions, Tools and Applications, LDTA 2011, Saarbrücken, Germany, March 26‑27, 2011.
Proceeding. Ed. by Claus Brabrand and Eric Van Wyk. ACM, p. 11. DOI: 10 .1145/1988783.1988794.
(Cit. on p. 175).

StackExchange (n.d.[a]). Do compilers utilize multithreading for faster compile times? URL: https://softwareen
gineering.stackexchange.com/questions/322494/do‑compilers‑utilize‑multithreading‑for‑faster‑com
pile‑times (cit. on p. 154).

— (n.d.[b]). Is there something that prevents a multithreaded C# compiler implementation? URL: https://softw
areengineering.stackexchange.com/questions/330026/is‑there‑something‑that‑prevents‑a‑multithre
aded‑c‑compiler‑implementation (cit. on p. 154).

— (n.d.[c]). Why isn’t Javac running on multiple cores? URL: https://stackoverflow.com/questions/4646175
7/why‑isnt‑javac‑running‑on‑multiple‑cores (cit. on p. 154).

Stallman, Richard M., Roland McGrath, and Paul D. Smith (2016). GNU Make. Free Software Foundation
(cit. on p. 155).

Stansifer, Paul (2016). “Flexible binding‑safe programming.” PhD thesis. Northeastern University. DOI:
10.17760/D20213100 (cit. on p. 81).

Steimann, Friedrich (2018). “Constraint‑Based Refactoring.” In: ACM Transactions on Programming Lan‑
guages and Systems 40.1. DOI: 10.1145/3156016. (Cit. on pp. 160, 172, 176).

Steimann, Friedrich, Marcus Frenkel, and Markus Voelter (2017). “Robust projectional editing.” In: Pro‑
ceedings of the 10th ACM SIGPLAN International Conference on Software Language Engineering, SLE 2017,
Vancouver, BC, Canada, October 23‑24, 2017. Ed. by Benoît Combemale, Marjan Mernik, and Bernhard
Rumpe. ACM, pp. 79–90. DOI: 10.1145/3136014.3136034. (Cit. on p. 175).

Strnisa, Rok and Matthew J. Parkinson (2011). “Lightweight Java.” In: Archive of Formal Proofs 2011. URL:
http://afp.sourceforge.net/entries/LightweightJava.shtml (cit. on p. 81).

Sulzmann, Martin and Peter J. Stuckey (2008). “HM(X) type inference is CLP(X) solving.” In: Journal of
Functional Programming 18.2, pp. 251–283. DOI: 10.1017/S0956796807006569. (Cit. on p. 82).

Swift (n.d.). Swift Compiler Performance. URL: https://github.com/swiftlang/swift/blob/6221b29c683544270
6fbb44b67b755d370a87d96/docs/CompilerPerformance.md (cit. on p. 154).

T.B. Steel, Jr., ed. (1966). Formal Language Description Languages for Computer Programming. Baden‑bei‑Wien:
North‑Holland Publishing Company. ISBN: 978‑0‑7204‑2015‑9 (cit. on p. 5).

Tip, Frank, Robert M. Fuhrer, Adam Kiezun, Michael D. Ernst, Ittai Balaban, and Bjorn De Sutter (2011).
“Refactoring using type constraints.” In:ACMTransactions on Programming Languages and Systems 33.3,
p. 9. DOI: 10.1145/1961204.1961205. (Cit. on pp. 160, 176).

Triplequote (n.d.). Hydra: The Parallel Scala Compiler. URL: https://triplequote.com/hydra/compilation/
(cit. on p. 154).

Van Antwerpen, Hendrik, Casper Bach Poulsen, Arjen Rouvoet, and Eelco Visser (2018). “Scopes as types.”
In: Proceedings of the ACM on Programming Languages 2.OOPSLA. DOI: 10.1145/3276484 (cit. on pp. 11,
47, 90–92, 95, 99, 120, 126, 153, 156, 161, 163, 165, 201).

Van Antwerpen, Hendrik and Eelco Visser (2021). “Scope States: Guarding Safety of Name Resolution in
Parallel Type Checkers.” In: 35th European Conference on Object‑Oriented Programming (ECOOP 2021).
Ed. by Anders Møller and Manu Sridharan. Vol. 194. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz‑Zentrum für Informatik, 1:1–1:29. DOI: 10.4
230/LIPIcs.ECOOP.2021.1. (Cit. on pp. 12, 125, 202).

Van Wijngaarden, Adriaan, B. J. Mailloux, John Edward Lancelot Peck, Cornelis H. A. Koster, Michel Sint‑
zoff, C. H. Lindsey, Lambert G. L. T. Meertens, and R. G. Fisker (1976).Revised Report on the Algorithmic
Language Algol 68. Springer. DOI: 10.1007/978‑3‑642‑95279‑1. (Cit. on p. 4).

https://doi.org/10.1145/1988783.1988794
https://softwareengineering.stackexchange.com/questions/322494/do-compilers-utilize-multithreading-for-faster-compile-times
https://softwareengineering.stackexchange.com/questions/322494/do-compilers-utilize-multithreading-for-faster-compile-times
https://softwareengineering.stackexchange.com/questions/322494/do-compilers-utilize-multithreading-for-faster-compile-times
https://softwareengineering.stackexchange.com/questions/330026/is-there-something-that-prevents-a-multithreaded-c-compiler-implementation
https://softwareengineering.stackexchange.com/questions/330026/is-there-something-that-prevents-a-multithreaded-c-compiler-implementation
https://softwareengineering.stackexchange.com/questions/330026/is-there-something-that-prevents-a-multithreaded-c-compiler-implementation
https://stackoverflow.com/questions/46461757/why-isnt-javac-running-on-multiple-cores
https://stackoverflow.com/questions/46461757/why-isnt-javac-running-on-multiple-cores
https://doi.org/10.17760/D20213100
https://doi.org/10.1145/3156016
https://doi.org/10.1145/3136014.3136034
http://afp.sourceforge.net/entries/LightweightJava.shtml
https://doi.org/10.1017/S0956796807006569
https://github.com/swiftlang/swift/blob/6221b29c6835442706fbb44b67b755d370a87d96/docs/CompilerPerformance.md
https://github.com/swiftlang/swift/blob/6221b29c6835442706fbb44b67b755d370a87d96/docs/CompilerPerformance.md
https://doi.org/10.1145/1961204.1961205
https://triplequote.com/hydra/compilation/
https://doi.org/10.1145/3276484
https://doi.org/10.4230/LIPIcs.ECOOP.2021.1
https://doi.org/10.4230/LIPIcs.ECOOP.2021.1
https://doi.org/10.1007/978-3-642-95279-1

198 Bibliography

van Antwerpen, Hendrik, Pierre Néron, Andrew P. Tolmach, Eelco Visser, and Guido Wachsmuth (2015).
A Constraint Language for Static Semantic Analysis based on Scope Graphs with Proofs. Tech. rep. TUD‑
SERG‑2015‑012. Software Engineering Research Group, Delft University of Technology. URL: http://s
werl.tudelft.nl/twiki/pub/Main/TechnicalReports/TUD‑SERG‑2015‑012.pdf (cit. on p. 38).

— (2016). “A constraint language for static semantic analysis based on scope graphs.” In: Proceedings of
the 2016 ACM SIGPLANWorkshop on Partial Evaluation and ProgramManipulation. Ed. by Martin Erwig
and Tiark Rompf. ACM, pp. 49–60. DOI: 10.1145/2847538.2847543. (Cit. on pp. 10, 17, 48, 50, 51, 53,
56, 68, 95, 100, 116, 120, 144, 156, 161, 163, 201).

Van Wyk, Eric, Derek Bodin, Jimin Gao, and Lijesh Krishnan (2010). “Silver: An extensible attribute gram‑
mar system.” In: Science of Computer Programming 75.1‑2, pp. 39–54. DOI: 10.1016/j.scico.2009.07.004.
(Cit. on p. 121).

Visser, Eelco (2015). “Understanding software through linguistic abstraction.” In: Science of Computer Pro‑
gramming 97, pp. 11–16. DOI: 10.1016/j.scico.2013.12.001. (Cit. on p. 186).

Visser, Eelco, Guido Wachsmuth, Andrew P. Tolmach, Pierre Néron, Vlad A. Vergu, Augusto Passalaqua,
and Gabriël Konat (2014). “A Language Designer’s Workbench: A One‑Stop‑Shop for Implementation
and Verification of Language Designs.” In: Onward! 2014, Proceedings of the 2014 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming & Software, part of SPLASH
’14, Portland, OR, USA, October 20‑24, 2014. Ed. by Andrew P. Black, Shriram Krishnamurthi, Bernd
Bruegge, and Joseph N. Ruskiewicz. ACM, pp. 95–111. DOI: 10.1145/2661136.2661149. (Cit. on pp. 17,
43, 44, 47, 174).

Vytiniotis, Dimitrios, Simon L. Peyton Jones, Tom Schrijvers, and Martin Sulzmann (2011). “OutsideIn(X)
Modular type inference with local assumptions.” In: J. Funct. Program. 21.4‑5, pp. 333–412. DOI: 10.1
017/S0956796811000098 (cit. on p. 82).

Wachsmuth, Guido, Gabriël Konat, Vlad A. Vergu, Danny M. Groenewegen, and Eelco Visser (2013). “A
Language Independent Task Engine for Incremental Name and Type Analysis.” In: Software Language
Engineering ‑ 6th International Conference, SLE 2013, Indianapolis, IN, USA, October 26‑28, 2013. Proceed‑
ings. Ed. by Martin Erwig, Richard F. Paige, and Eric Van Wyk. Vol. 8225. Lecture Notes in Computer
Science. Springer, pp. 260–280. DOI: 10.1007/978‑3‑319‑02654‑1_15. (Cit. on pp. 43, 44).

Wenzel, Makarius (2009). “Parallel Proof Checking in Isabelle/Isar.” en. In: ACM SIGSAM Workshop on
Programming Languages for Mechanized Mathematics Systems (PLMMS ’09). New York, NY, USA: Asso‑
ciation for Computing Machinery, p. 9 (cit. on p. 155).

— (2013). “Shared‑Memory Multiprocessing for Interactive Theorem Proving.” In: Interactive Theorem
Proving ‑ 4th International Conference, ITP 2013, Rennes, France, July 22‑26, 2013. Proceedings. Ed. by San‑
drine Blazy, Christine Paulin‑Mohring, and David Pichardie. Vol. 7998. Lecture Notes in Computer
Science. Springer, pp. 418–434. DOI: 10.1007/978‑3‑642‑39634‑2_30. (Cit. on pp. 155, 156).

Zhang, Danfeng and Andrew C. Myers (2014). “Toward general diagnosis of static errors.” In: The 41st An‑
nual ACM SIGPLAN‑SIGACT Symposium on Principles of Programming Languages, POPL ’14, San Diego,
CA, USA, January 20‑21, 2014. Ed. by Suresh Jagannathan and Peter Sewell. ACM, pp. 569–582. DOI:
10.1145/2535838.2535870. (Cit. on p. 46).

Zhang, Danfeng, Andrew C. Myers, Dimitrios Vytiniotis, and Simon L. Peyton Jones (2015). “Diagnosing
type errors with class.” In: Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation, Portland, OR, USA, June 15‑17, 2015. Ed. by David Grove and Steve Black‑
burn. ACM, pp. 12–21. DOI: 10.1145/2737924.2738009. (Cit. on p. 46).

— (2017). “SHErrLoc: A Static Holistic Error Locator.” In: ACM Transactions on Programming Languages
and Systems 39.4. DOI: 10.1145/3121137. (Cit. on p. 185).

Zhang, Yao and Hao Ma (2014). “Analysis of Networked Control Schemes and Data‑Processing Method
for Parallel Inverters.” In: IEEE Transactions on Industrial Electronics 61.4, pp. 1834–1844. DOI: 10.1109
/TIE.2013.2267701. (Cit. on p. 185).

http://swerl.tudelft.nl/twiki/pub/Main/TechnicalReports/TUD-SERG-2015-012.pdf
http://swerl.tudelft.nl/twiki/pub/Main/TechnicalReports/TUD-SERG-2015-012.pdf
https://doi.org/10.1145/2847538.2847543
https://doi.org/10.1016/j.scico.2009.07.004
https://doi.org/10.1016/j.scico.2013.12.001
https://doi.org/10.1145/2661136.2661149
https://doi.org/10.1017/S0956796811000098
https://doi.org/10.1017/S0956796811000098
https://doi.org/10.1007/978-3-319-02654-1_15
https://doi.org/10.1007/978-3-642-39634-2_30
https://doi.org/10.1145/2535838.2535870
https://doi.org/10.1145/2737924.2738009
https://doi.org/10.1145/3121137
https://doi.org/10.1109/TIE.2013.2267701
https://doi.org/10.1109/TIE.2013.2267701

Bibliography 199

Zwaan, Aron (2022). “Specializing Scope Graph Resolution Queries.” In: Proceedings of the 15th ACM SIG‑
PLAN International Conference on Software Language Engineering. SLE 2022. Auckland, New Zealand:
Association for Computing Machinery, pp. 121–133. DOI: 10.1145/3567512.3567523. (Cit. on pp. 182,
184).

Zwaan, Aron and Hendrik van Antwerpen (2023). “Scope Graphs: The Story so Far.” In: Eelco Visser Com‑
memorative Symposium (EVCS 2023). Ed. by Ralf Lämmel, Peter D. Mosses, and Friedrich Steimann.
Vol. 109. Open Access Series in Informatics (OASIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz‑
Zentrum für Informatik, 32:1–32:13. DOI: 10.4230/OASIcs.EVCS.2023.32 (cit. on pp. 7, 202).

Zwaan, Aron, Hendrik van Antwerpen, and Eelco Visser (2022). “Incremental type‑checking for free: us‑
ing scope graphs to derive incremental type‑checkers.” In: Proceedings of the ACM on Programming
Languages 6.OOPSLA2, pp. 424–448. DOI: 10.1145/3563303 (cit. on pp. 182, 184, 202).

https://doi.org/10.1145/3567512.3567523
https://doi.org/10.4230/OASIcs.EVCS.2023.32
https://doi.org/10.1145/3563303

Curriculum Vitae

Hendrik van Antwerpen

Education

2002 Gymnasium
Guido de Brès, Rotterdam

2011 BEng Computer Science
The Hague University of Applied Sciences

2016 MSc Computer Science
Delft University of Technology

2025 PhD Computer Science
Delft University of Technology

Publications

2016 Hendrik van Antwerpen, Pierre Néron, Andrew P. Tolmach, Eelco
Visser, and Guido Wachsmuth (2016). “A constraint language for
static semantic analysis based on scope graphs.” In: Proceedings of
the 2016 ACMSIGPLANWorkshop on Partial Evaluation and Program
Manipulation. DOI: 10.1145/2847538.2847543.

2018 Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet,
and Eelco Visser (2018). “Scopes as types.” In: Proceedings of the
ACM on Programming Languages OOPSLA. DOI: 10.1145/3276484

2019 Daniel A. A. Pelsmaeker, Hendrik van Antwerpen, and Eelco
Visser (2019). “Towards Language‑Parametric Semantic Editor
Services Based on Declarative Type System Specifications (Brave
New Idea Paper).” In: 33rd European Conference on Object‑Oriented
Programming (ECOOP 2019). Dagstuhl, Germany. DOI: 10.4230
/LIPIcs.ECOOP.2019.26

https://doi.org/10.1145/2847538.2847543
https://doi.org/10.1145/3276484
https://doi.org/10.4230/LIPIcs.ECOOP.2019.26
https://doi.org/10.4230/LIPIcs.ECOOP.2019.26

Adrian D. Mensing, Hendrik van Antwerpen, Casper Bach
Poulsen, and Eelco Visser (2019). “From definitional interpreter
to symbolic executor.” In: Proceedings of the 4th ACM SIGPLAN In‑
ternationalWorkshop onMeta‑Programming Techniques and Reflection.
Athens, Greece. DOI: 10.1145/3358502.3361269

2020 Arjen Rouvoet, Hendrik van Antwerpen, Casper Bach Poulsen,
Robbert Krebbers, and Eelco Visser (2020a). “Knowing when to
ask: sound scheduling of name resolution in type checkers de‑
rived from declarative specifications.” In: Proceedings of the ACM
on Programming Languages OOPSLA. DOI: 10.1145/3428248

2021 Hendrik van Antwerpen and Eelco Visser (2021). “Scope States:
Guarding Safety of Name Resolution in Parallel Type Check‑
ers.” In: 35th European Conference on Object‑Oriented Programming
(ECOOP 2021). Dagstuhl, Germany. DOI: 10.4230/LIPIcs.ECOOP.
2021.1.

2022 Aron Zwaan, Hendrik van Antwerpen, and Eelco Visser (2022).
“Incremental type‑checking for free: using scope graphs to derive
incremental type‑checkers.” In: Proceedings of the ACMon Program‑
ming Languages OOPSLA2. DOI: 10.1145/3563303

Daniël A. A. Pelsmaeker, Hendrik van Antwerpen, Casper Bach
Poulsen, and Eelco Visser (2022). “Language‑parametric static se‑
mantic code completion.” In: Proceedings of the ACM on Program‑
ming Languages OOPSLA. DOI: 10.1145/3527329.

2023 Aron Zwaan and Hendrik van Antwerpen (2023). “Scope Graphs:
The Story so Far.” In: Eelco Visser Commemorative Symposium
(EVCS 2023). Dagstuhl, Germany. DOI: 10.4230/OASIcs.EVCS.20
23.32

Douglas A. Creager and Hendrik van Antwerpen (2023). “Stack
Graphs: Name Resolution at Scale.” In: Eelco Visser Commemora‑
tive Symposium (EVCS 2023). Dagstuhl, Germany. DOI: 10.4230
/OASIcs.EVCS.2023.8.

0000‑0001‑5117‑0921

https://doi.org/10.1145/3358502.3361269
https://doi.org/10.1145/3428248
https://doi.org/10.4230/LIPIcs.ECOOP.2021.1
https://doi.org/10.4230/LIPIcs.ECOOP.2021.1
https://doi.org/10.1145/3563303
https://doi.org/10.1145/3527329
https://doi.org/10.4230/OASIcs.EVCS.2023.32
https://doi.org/10.4230/OASIcs.EVCS.2023.32
https://doi.org/10.4230/OASIcs.EVCS.2023.8
https://doi.org/10.4230/OASIcs.EVCS.2023.8
https://orcid.org/0000-0001-5117-0921

Titles in the IPA Dissertation Series since 2022

A. Fedotov. Verification Techniques for xMAS.
Faculty of Mathematics and Computer Sci‑
ence, TU/e. 2022‑01

M.O. Mahmoud. GPU Enabled Automated
Reasoning. Faculty of Mathematics and Com‑
puter Science, TU/e. 2022‑02

M. Safari. Correct Optimized GPU Programs.
Faculty of Electrical Engineering, Mathemat‑
ics & Computer Science, UT. 2022‑03

M. Verano Merino. Engineering Language‑
Parametric End‑User Programming Environ‑
ments for DSLs. Faculty of Mathematics and
Computer Science, TU/e. 2022‑04

G.F.C. Dupont. Network Security Monitor‑
ing in Environments where Digital and Physi‑
cal Safety are Critical. Faculty of Mathematics
and Computer Science, TU/e. 2022‑05

T.M. Soethout. Banking on Domain Knowl‑
edge for Faster Transactions. Faculty of Mathe‑
matics and Computer Science, TU/e. 2022‑06

P. Vukmirović. Implementation of Higher‑
Order Superposition. Faculty of Sciences, De‑
partment of Computer Science, VU. 2022‑07

J. Wagemaker. Extensions of (Concurrent)
Kleene Algebra. Faculty of Science, Mathe‑
matics and Computer Science, RU. 2022‑08

R. Janssen. Refinement and Partiality
for Model‑Based Testing. Faculty of Sci‑
ence, Mathematics and Computer Science,
RU. 2022‑09

M. Laveaux. Accelerated Verification of Con‑
current Systems. Faculty of Mathematics and
Computer Science, TU/e. 2022‑10

S. Kochanthara. A Changing Landscape: On
Safety & Open Source in Automated and Con‑
nected Driving. Faculty of Mathematics and
Computer Science, TU/e. 2023‑01

L.M. Ochoa Venegas. Break the Code? Break‑
ing Changes and Their Impact on Software Evo‑
lution. Faculty of Mathematics and Com‑
puter Science, TU/e. 2023‑02

N. Yang. Logs and models in engineering
complex embedded production software systems.
Faculty of Mathematics and Computer Sci‑
ence, TU/e. 2023‑03

J. Cao. An Independent Timing Analysis for
Credit‑Based Shaping in Ethernet TSN. Fac‑
ulty of Mathematics and Computer Science,
TU/e. 2023‑04

K. Dokter. Scheduled Protocol Programming.
Faculty of Mathematics and Natural Sci‑
ences, UL. 2023‑05

J. Smits. Strategic Language Workbench Im‑
provements. Faculty of Electrical Engineer‑
ing, Mathematics, and Computer Science,
TUD. 2023‑06

A. Arslanagić. Minimal Structures for Pro‑
gram Analysis and Verification. Faculty of Sci‑
ence and Engineering, RUG. 2023‑07

M.S. Bouwman. Supporting Railway Stan‑
dardisation with Formal Verification. Fac‑
ulty of Mathematics and Computer Science,
TU/e. 2023‑08

S.A.M. Lathouwers. Exploring Annotations
for Deductive Verification. Faculty of Electri‑
cal Engineering, Mathematics & Computer
Science, UT. 2023‑09

J.H. Stoel. Solving the Bank, Lightweight Spec‑
ification and Verification Techniques for Enter‑
prise Software. Faculty of Mathematics and
Computer Science, TU/e. 2023‑10

D.M. Groenewegen. WebDSL: Linguistic
Abstractions for Web Programming. Faculty
of Electrical Engineering, Mathematics, and
Computer Science, TUD. 2023‑11

D.R. do Vale. On Semantical Methods for
Higher‑Order Complexity Analysis. Faculty
of Science, Mathematics and Computer Sci‑
ence, RU. 2024‑01

M.J.G. Olsthoorn. More Effective Test Case
Generation with Multiple Tribes of AI. Faculty
of Electrical Engineering, Mathematics, and
Computer Science, TUD. 2024‑02

B. van den Heuvel. Correctly Communicat‑
ing Software: Distributed, Asynchronous, and
Beyond. Faculty of Science and Engineering,
RUG. 2024‑03

H.A. Hiep. New Foundations for Separation
Logic. Faculty of Mathematics and Natural
Sciences, UL. 2024‑04

C.E. Brandt. Test Amplification For and With
Developers. Faculty of Electrical Engineer‑
ing, Mathematics, and Computer Science,
TUD. 2024‑05

J.I. Hejderup. Fine‑Grained Analysis of Soft‑
ware Supply Chains. Faculty of Electrical En‑
gineering, Mathematics, and Computer Sci‑
ence, TUD. 2024‑06

J. Jacobs. Guarantees by construction. Faculty
of Science, Mathematics and Computer Sci‑
ence, RU. 2024‑07

O. Bunte. Cracking OIL: A Formal Perspective
on an Industrial DSL forModelling Control Soft‑
ware. Faculty of Mathematics and Computer
Science, TU/e. 2024‑08

R.J.A. Erkens. Automaton‑based Techniques
for Optimized Term Rewriting. Faculty

of Mathematics and Computer Science,
TU/e. 2024‑09

J.J.M.Martens. The Complexity of Bisimilarity
by Partition Refinement. Faculty of Mathemat‑
ics and Computer Science, TU/e. 2024‑10

L.J. Edixhoven. Expressive Specification and
Verification of Choreographies. Faculty of Sci‑
ence, OU. 2024‑11

J.W.N. Paulus. On the Expressivity of Typed
Concurrent Calculi. Faculty of Science and
Engineering, RUG. 2024‑12

J. Denkers. Domain‑Specific Languages for
Digital Printing Systems. Faculty of Electrical
Engineering, Mathematics, and Computer
Science, TUD. 2024‑13

L.H. Applis. Tool‑Driven Quality Assur‑
ance for Functional Programming and Machine
Learning. Faculty of Electrical Engineer‑
ing, Mathematics, and Computer Science,
TUD. 2024‑14

P. Karkhanis. Driving the Future: Facilitating
C‑ITS Service Deployment for Connected and
Smart Roadways. Faculty of Mathematics and
Computer Science, TU/e. 2024‑15

N.W. Cassee. Sentiment in Software Engineer‑
ing. Faculty of Mathematics and Computer
Science, TU/e. 2024‑16

H. vanAntwerpen. DeclarativeName Binding
for Type System Specifications. Faculty of Elec‑
trical Engineering, Mathematics, and Com‑
puter Science, TUD. 2025‑01

	Summary
	Samenvatting
	Acknowledgments
	1 Introduction
	1.1 Name Binding in Programming Languages
	1.2 Programming Language Specifications
	1.3 Meta-Languages
	1.4 Research Objective
	1.5 Research Method
	1.6 Contributions

	I Specification
	2 A Constraint Language for Static Semantic Analysis
	2.1 Introduction
	2.2 Constraints for Static Semantics
	2.3 Syntax and Semantics of Constraints
	2.4 Resolution Algorithm
	2.5 Related Work and Discussion

	3 Scopes as Types
	3.1 Introduction
	3.2 Scopes as Types
	3.3 Statix: Specification with Scopes and Constraints
	3.4 Executing Statix Specifications
	3.5 Evaluation
	3.6 Related Work
	3.7 Conclusion

	II Interpretation
	4 Knowing When to Ask
	4.1 Introduction
	4.2 Specifying & Scheduling Name Resolution
	4.3 Statix-core: A Constraint Language
	4.4 Solving Constraints
	4.5 Solving Queries: Knowing When to Ask
	4.6 Implementation and Case Studies
	4.7 Related Work
	4.8 Conclusion

	5 Scope States
	5.1 Introduction
	5.2 Motivation and Scope
	5.3 Type Checking with Scope Graphs
	5.4 Hierarchical Compilation Units
	5.5 Parallel Actor-Based Algorithm
	5.6 Evaluation
	5.7 Related Work
	5.8 Conclusion

	6 Towards Language-Parametric Semantic Editor Services
	6.1 Introduction
	6.2 Characterizing Editor Services
	6.3 Introduction to Statix
	6.4 Informing Editor Services
	6.5 Code Completion
	6.6 Extract Definition
	6.7 Related Work
	6.8 Conclusion

	7 Conclusion
	7.1 Discussion
	7.2 Suggestions for Future Work
	7.3 On Research Adoption

	Bibliography
	Curriculum Vitae

