
114

Scopes as Types

HENDRIK VAN ANTWERPEN, Delft University of Technology, Netherlands

CASPER BACH POULSEN, Delft University of Technology, Netherlands

ARJEN ROUVOET, Delft University of Technology, Netherlands

EELCO VISSER, Delft University of Technology, Netherlands

Scope graphs are a promising generic framework to model the binding structures of programming languages,

bridging formalization and implementation, supporting the definition of type checkers and the automation

of type safety proofs. However, previous work on scope graphs has been limited to simple, nominal type

systems. In this paper, we show that viewing scopes as types enables us to model the internal structure of

types in a range of non-simple type systems (including structural records and generic classes) using the

generic representation of scopes. Further, we show that relations between such types can be expressed in

terms of generalized scope graph queries. We extend scope graphs with scoped relations and queries. We

introduce Statix, a new domain-specific meta-language for the specification of static semantics, based on scope

graphs and constraints. We evaluate the scopes as types approach and the Statix design in case studies of the

simply-typed lambda calculus with records, System F, and Featherweight Generic Java.

CCS Concepts: • Software and its engineering→ Semantics; Domain specific languages;

Additional Key Words and Phrases: static semantics, type system, type checker, name resolution, scope graphs,

domain-specific language

ACM Reference Format:

Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and Eelco Visser. 2018. Scopes as Types. Proc.

ACM Program. Lang. 2, OOPSLA, Article 114 (November 2018), 30 pages. https://doi.org/10.1145/3276484

1 INTRODUCTION

The goal of our work is to support high-level specification of type systems that can be used for multi-
ple purposes, including reasoning (about type safety among other things) and the implementation of
type checkers [Visser et al. 2014]. Traditional approaches to type system specification do not reflect
the commonality underlying the name binding mechanisms for different languages. Furthermore,
operationalizing name binding in a type checker requires carefully staging the traversals of the
abstract syntax tree in order to collect information before it is needed. In this paper, we introduce
an approach to the declarative specification of type systems that is close in abstraction to traditional
type system specifications, but can be directly interpreted as type checking rules. The approach is
based on scope graphs for name resolution, and constraints to separate traversal order from solving
order.

Authors’ addresses: Hendrik van Antwerpen, Delft University of Technology, Delft, Netherlands, H.vanAntwerpen@tudelft.

nl; Casper Bach Poulsen, Delft University of Technology, Delft, Netherlands, C.B.Poulsen@tudelft.nl; Arjen Rouvoet, Delft

University of Technology, Delft, Netherlands, A.J.Rouvoet@tudelft.nl; Eelco Visser, Delft University of Technology, Delft,

Netherlands, E.Visser@tudelft.nl.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

2475-1421/2018/11-ART114

https://doi.org/10.1145/3276484

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 114. Publication date: November 2018.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3276484
https://doi.org/10.1145/3276484

114:2 Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and Eelco Visser

Modeling Names in Programming Languages. Formal definitions of type systems and their imple-
mentation as type checkers feature a variety of techniques to model and implement name binding
and name resolution for different languages. For example, if we consider Pierce’s [2002] book
we encounter the following representations for the treatment of names: sequences of name-type
associations to represent type environments for the simply-typed lambda calculus; tuples of label-
type associations to represent record and variant types; class tables with functions for field and
method lookup to represent the nominal class types of Featherweight Java; types with quantifiers
to represent parameterized types in System F; and pairs of type variables and types to represent
existential types. These are all fine mathematical representations, but they have been optimized for
the particular language they model. These optimizations obscure the understanding of the common
underlying concepts of name binding. Furthermore, the variation in representations is not a good
basis for the construction of reusable tools for language design. Would it be possible to standardize
the treatment of names in programming languages?

Modeling Name Resolution with Scope Graphs. Scope graphs were introduced by Néron et al. [2015]
as a general model for name resolution in programming languages that is suitable for formalization
as well as implementation. A scope graph captures the binding structure of a program. A scope
is a region in a program that behaves uniformly with respect to name resolution. Declarations of
names and references are associated with scopes. Visibility is modeled by edges between scopes. A
generic, language-independent resolution algorithm interprets a scope graph to resolve references
to declarations by finding the most specific well-formed path in a scope graph. To express the
binding rules of a programming language, one defines a mapping from abstract syntax trees to
scope graphs. Scope graphs cover a wide range of binding structures, including lexical bindings1

such as let bindings, function parameters, and local variables in blocks; and non-lexical bindings

such as (potentially cyclic) module imports and class inheritance. The framework enables language-
independent definitions of alpha equivalence and safe variable renaming.
The scope graph framework has already been used succesfully in several applications. Van

Antwerpen et al. [2016] use scope graphs to model name binding in a constraint language for the
definition of type checkers. Poulsen et al. [2016] define a framework in which scopes describe frames,
providing a language-independent model for run-time memory in dynamic semantics. Poulsen et al.
[2018] show that this model can be used to realize type safety by construction in intrinsically-typed
definitional interpreters for imperative languages.

Thus, scope graphs are the basis for a promising approach to the definition of the static semantics
of programming languages that serves the implementation of tools such as type checkers, as well as
the verification of language properties such as type safety. However, the adoption of scope graphs
is inhibited by its limitation to simple type systems. As a model that ties information to names,
scope graphs appear to be limited in expressiveness. The works cited above cover languages with
simple, nominal type systems in which types are identified by name, and their future work calls for
extension to more sophisticated type systems. In particular, it is not clear how scope graphs can be
used to describe structural types, in which types are not identified by name, and generic types, in
which types are parameterized by types.

Scopes as Types. In this paper, we demonstrate how scope graphs can be used to model type
systems with more sophisticated forms of type representation and compatibility checking, such as
structural record types and parameterized types in both nominal and structural type systems, by
using scopes as types. Scope graph scopes can model a variety of structured types such as records

1 Lexical bindings are those in which the name binding construct dominates the abstract tree that corresponds to the scope

of the construct. Non-lexical bindings define names that are reachable outside the dominated tree.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 114. Publication date: November 2018.

Scopes as Types 114:3

and classes. Visibility edges between scopes can be used to model subtyping. The instantiation
of a parameterized type can be modeled by means of a new scope that refines the binding of a
parameter. To realize scopes-as-types we generalize scope graphs with scoped relations, formalizing
scoped information including typed declarations, and we simplify scope graphs by using the
scopes-as-types approach to model imports, which were previously built into the framework.
We demonstrate how the approach can be applied in the definition of type systems for the

simply-typed lambda calculus with records (featuring structural sub-typing) [Pierce 2002], System
F (featuring parametric types) [Girard 1972; Reynolds 1974], and Featherweight Generic Java
(featuring generic class types) [Igarashi et al. 2001].

Staging Name Resolution and Type Checking. Scope graphs provide a uniform model for the
representation and resolution of binding information in programs, but they do not, by themselves,
address another issue with realizing declarative definition of type checkers: the staging of name
resolution and type checking. It is common practice to use constraints in type checkers in order to
separate the collection of type compatibility requirements, and checking that these are satisfied.
However, name resolution is typically performed during the traversal of the abstract syntax tree that
generates constraints. This requires a careful staging of the traversal in order to collect information
(names and their types) before it will be needed. For example, checking a recursive let expression
requires processing the declared variables before checking the initializing expressions. Similarly,
checkingmodules or classes requires collecting signature information before checking their contents.
This approach is further complicated when considering type-dependent name resolution in which
the resolution of names depends on the resolution of types.

In this paper, we introduce Statix, a constraint-based declarative language for the specification of
type systems that combines type constraints with name resolution constraints based on scope graphs.
That is, Statix rules define the static semantics of language constructs in terms of constraints over
type terms and constraints that define and query a scope graph. Definition of type checkers using
this approach is more declarative since the order of evaluation of constraints is not tied to the order
of the traversal of the abstract syntax tree. In particular, this relieves the language designer from
ensuring that information is collected before it is used. Statix generalizes the constraint language
of Van Antwerpen et al. [2016] by introducing user-defined constraints, required to define type
compatibility predicates, and by generalizing name resolution to scope graph queries to retrieve
(visible) scoped information.

Contributions. The paper makes the following technical contributions:
• We show that viewing scopes as types enables modeling the internal structure of types in a
range of interesting type systems, including structural records and generic classes, using the
generic representation of scopes.
• We extend the scope graph framework of Néron et al. [2015] and Van Antwerpen et al. [2016]
with scoped relations tomodel the association of types with declarations and the representation
of explicit substitutions in the instantiation of parameterized types. We generalize name
resolution from resolution of references to general queries for scoped relations. Furthermore,
visibility policies, which were global (per language), can be defined per query, enabling
namespace-specific visibility policies. We simplify the framework by not including imports
as a primitive, since these can be encoded using the scopes-as-types approach.
• We extend the visual notation of scope graph diagrams with scoped relations, which provides
a useful language to explain patterns of names and types in programming languages.
• We introduce Statix, a declarative language to specify type systems. The language provides
simple guarded rules for the definition of user-defined constraints with unification, scope

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 114. Publication date: November 2018.

114:4 Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and Eelco Visser

graph construction, and name resolution as built-in theories. We provide a formal definition
of the declarative semantics of Statix.
• We discuss the execution model of Statix and how it guarantees soundness of resolution in

incomplete graphs.
• We evaluate the scopes-as-types approach and the Statix language in three case studies:
the simply-typed lambda calculus with records (featuring structural sub-typing) [Pierce
2002] (STLC-REC), System F (featuring parametric types) [Girard 1972; Reynolds 1974], and
Featherweight Generic Java (featuring generic class types) [Igarashi et al. 2001].

Outline. In Section 2 we present the revised scope graph framework and the corresponding
resolution calculus. We demonstrate how this formalism supports the specification of type systems,
including ones with structural and parametric types. In Section 3 we introduce the Statix language
and its declarative semantics. We show the specification in Statix of typical patterns in programming
languages with structural and parametric type systems. In Section 4 we discuss the execution model
of the solver for the Statix language. In particular, we discuss resolution in incomplete scope graphs.
In Section 5 we discuss the evaluation of Statix by means of an implementation in the Spoofax
language workbench and several critical case studies. In Section 6 we discuss how the approach
compares to other approaches. We conclude in Section 7.

2 SCOPES AS TYPES

Typing is deeply dependent on name resolution: a program phrase is typically typed by resolving
names that occur in it to names in its surrounding context. In many interesting languages, types
can also bind names; this is the case with record types, object or class types, and dependent types.
In this section we observe and illustrate how types that bind names (records, objects, etc.) can
be described by scopes in a scope graph, and we present a revised definition of the scope graph
framework of Néron et al. [2015] and Van Antwerpen et al. [2016] and show how it can be applied
to the definition of type systems.

2.1 Scope Graphs and the Resolution Calculus

In the scope graph approach, a program is reduced to a graph that represents its binding information.
The first part of Fig. 1 defines the structure of scope graphs. A scope graph consists of scopes,
connected by edges, containing data. A labeled edge s1

l s2 between scopes s1 and s2 determines
that the declarations in scope s2 are reachable from scope s1. The label can be used to regulate
visibility. A scoped datum s r d associates a data term d with a scope s under relation r . For
example, we will use s :

(x ,T), to represent a declaration of name x in the scope s with type T ,
and use x : T to denote the pair. There may be multiple data items associated with a scope under
the same relation.

Given this structure, we can now precisely characterize name resolution for a reference as finding
a path from its scope to a scope with a matching declaration. This intuition is formally captured by
the resolution calculus in the third part of Fig. 1, which is parameterized by well-formedness and
visibility parameters defined in the second part of Fig. 1. We discuss the judgments of the calculus.

The judgment G ⊢ p : s1 ↠ s2 states that there is a path p from scope s1 to scope s2, if there is
a sequence of labeled scope edges starting at s1 and leading to s2. Cyclic paths are not admitted:
the s1 < scopes(p) premise of (NR-Cons) asserts that scope s1 does not occur in path p. The path p
records the scopes and edge labels that it passes through.

The judgmentWFD,WFL,G ⊢ p : s r d states that data term (declaration)d is reachable through
path p from scope s under relation r with data term predicate WFD and label well-formedness
predicateWFL. Label well-formedness tests that the path has a ‘good shape’ as defined by a regular

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 114. Publication date: November 2018.

Scopes as Types 114:5

Syntax Parameters

data terms d ∈ D a set of data terms

labels l ∈ L a set of edge labels

relations r ∈ R a set of relation names
Syntax Definitions

scopes s ∈ S := some countable set

paths p ∈ P ::= s | s ·l ·p

edges Edges ::= s l s

datums Data ::= s r d

scope graphs G ∈ Graphs ::= ⟨scopes ⊆ S, edges ⊆ Edges, data ⊆ Data⟩

extended labels l̂ ∈ L̂ := L ∪ {$} where $ indicates the end of a path

Visibility Parameters

data term well-formedness WFD ⊆ D

label well-formedness WFL ⊆ L∗ defined as a regular expression

data order ≤d ⊆ D × D partial order

label order <l ⊆ L̂ × L̂ strict partial order

Path Well-formedness WFL ⊢ p ok

(l1 . . . ln) ∈ WFL

WFL ⊢ (s1·l1· . . . · sn ·ln ·sn+1) ok
Visibility Order <l ⊢ p <p p

<l ⊢ p1 <p p2

<l ⊢ s ·l ·p1 <p s ·l ·p2

$ <l l

<l ⊢ s <p s ·l ·p

l <l $

<l ⊢ s ·l ·p <p s

l1 <l l2

<l ⊢ s ·l1·p1 <p s ·l2·p2

Paths G ⊢ p : s ↠ s

(NR-Refl)
s ∈ scopes(G)

G ⊢ s : s ↠ s
(NR-Cons)

s1
l s2 ∈ edges(G) G ⊢ p : s2 ↠ s3 s1 < scopes(p)

G ⊢ s1·l ·p : s1 ↠ s3

Reachability WFD,WFL,G ⊢ p : s r d

(NR-Rel)
G ⊢ p : s ↠ s ′ s ′ r d ∈ data(G) WFL ⊢ p ok d ∈ WFD

WFD,WFL,G ⊢ p : s r d

Visibility WFD,WFL, ≤d , <l ,G ⊢ p : s r d

(NR-Vis)

WFD,WFL,G ⊢ p : s r d

∄ p ′d ′.
((

WFD,WFL,G ⊢ p ′ : s r d ′
)

∧
(

<l ⊢ p
′
<p p

)

∧ (d ′ ≤d d)
)

WFD,WFL, ≤d , <l ,G ⊢ p : s r d

Fig. 1. Formal definition of scope graphs with syntax, visibility predicates, and resolution calculus

expression. This is used to model policies such as transitive vs. non-transitive imports or the
unreachability of lexical parents of imported modules [Van Antwerpen et al. 2016]. Data term
well-formedness tests whether we have found the datum we were looking for. For example, to
resolve a reference x we use a well-formedness predicate that matches all declaration-type pairs

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 114. Publication date: November 2018.

114:6 Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and Eelco Visser

y : T where x ≃ y, that is, the reference has the same name as the declaration (but a different
position in the program).

Finally, the judgment WFD,WFL, ≤d , <l ,G ⊢ p : s r d states that data term d is visible through
path p from scope s under relation r with the well-formedness predicatesWFD,WFL, and the orders
≤d and <l . The parameterization is chosen such that algorithmic resolution remains feasible (see
Section 4.2). The visibility order p1 <p p2 (‘p1 shadows p2’) is defined as a prefix order over the
labels of a path, in terms of a label order <l . A special label $ indicates the end of a path, and is
used to order paths of different lengths. The prefix order only orders paths that have a common
prefix. That is, s1·l1·s2 ≮p s ′1·l

′
1·s
′
2·l
′
2·s
′
3 when s1 , s

′
1 or l1 , l

′
1. The data order d ≤d d decides which

declarations shadow each other, if multiple declarations are reachable via shadowing paths. This
is used to specify all visible declarations, where a declaration only shadows a declaration that is
reached via a shadowed path, if it has the same name. Using the visibility order and data order, the
rule (NR-Vis) defines that a data term d is visible through path p when there does not exist a data
term d ′ reachable through p ′ such that d ′ shadows d and such that p ′ is strictly preferred over p.
We will illustrate below how this captures the notion of shadowing in name resolution.

In the rest of this section we show how scope graphs can be used in the definition of type systems
for languages with a variety of binding systems, including bindings in types. We discuss how our
approach compares to representations of binding in traditional definitions of type systems.

2.2 Simply-Typed Lambda Calculus

First we consider the syntax and typing rules for the simply-typed lambda calculus with arithmetic
expressions (STLC) in Fig. 3. The language consists of number constants, addition, function literals,
variables, function application, and let bindings.

Name binding for STLC is typically modeled using type environments, which are ordered lists of
pairs associating a name with a type. Scoping is modeled by extension of an environment with a
new pair, which shadows any earlier declarations of the same name (either by removing a matching
pair or through definition of the lookup function). The extended environment is only used for those
sub-expressions where the binding is in scope. Scope graphs make the shadowing rules explicit by
separating the construction of the binding structure and the definition of resolution.
The typing rules in Fig. 3 use scope graphs and the resolution calculus instead of type environ-

ments to model binding in STLC. The judgment G, s ⊢ e : t states that in the context of scope graph
G and scope s , expression e has type t. The rules are implicitly parameterized by a scope graph
G, and use s1

l s2 as a shorthand for s1
l s2 ∈ edges(G), and s

r d for s r d ∈ data(G).

The notation ∇s is used to assert that a scope s is distinct in a scope graph.2 For example, the ∇s2
premise in the (STLC-Fun) rule asserts that the scope s2 is distinct from s1 in the scope graph.

Scope Graph Structure. In addition to defining the types of expression forms, the typing rules
define the scoping structure of expressions by relating the scope of an expression to the scope(s)
of its sub-expressions. Numbers, addition, and function application are non-binding, non-scoping
constructs. Thus, rules (STLC-Num), (STLC-Plus), and (STLC-App) state that the scope of the
sub-expressions (if any) of these operators is the same as the scope of the parent. Rules (STLC-Fun)
and (STLC-Let) introduce a distinct scope s2 and associate a declaration xi : t for the binding
occurrence with that scope. A scope edge s2

P s1 makes the declarations reachable from s1, also
reachable from the scope s2, which is used as the scope for the sub-expression in which the binding
occurrence is in scope: the bodies of the function and let expression. Note that in (STLC-Let), scope

2We can think of ∇s as a claim to łownershipž of scope s . Each scope in the scope graph can have exactly one łownerž. In

Section 4 we give a declarative semantics of Statix where this notion is formally defined.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 114. Publication date: November 2018.

Scopes as Types 114:7

Syntax

integers z ∈ Z := {...,-1 , 0,1, ...}

identifiers x ∈ Id := some countable set

expressions e ∈ Expr ::= z | e + e | fun(x : t) { e } | x | e e | let x = e in e

types t ∈ Type ::= num | t -> t

Resolution Syntax Parameters

labels l ∈ L ::= P

relations r ∈ R ::= :

data terms d ∈ D ::= xi : t

Matching Declarations, Label Order and Data Order d ∈ DECL(xi) l̂ <l l̂ t ≤⊤ t
xi ≃ xj

(xj : t) ∈ DECL(xi)
$ <l P t1 ≤⊤ t2

Typing Rules G, s ⊢ e : t

(STLC-Num)
s ⊢ z : num

(STLC-Plus)
s ⊢ e1 : num s ⊢ e2 : num

s ⊢ e1 + e2 : num

(STLC-Fun)
∇s2 s2

P s1 s2
:

xi : t1 s2 ⊢ e : t2

s1 ⊢ fun (xi : t1) { e } : t1 -> t2

(STLC-Id)
DECL(xi),P

∗
, ≤⊤, <l ⊢ p : s : xj : t

s ⊢ xi : t
(STLC-App)

s ⊢ e1 : t1 -> t2 s ⊢ e2 : t1
s ⊢ e1 e2 : t2

(STLC-Let)
s1 ⊢ e1 : t1 ∇s2 s2

P s1 s2
:

xi : t1 s2 ⊢ e2 : t2

s1 ⊢ let xi = e1 in e2 : t2
Fig. 3. Syntax and typing rules for a simply-typed lambda calculus using scope graphs

s1 is used for the initialization expression, reflecting that the variable introduced is not in scope in
that expression.

let x1 = 3 in

let f2 = fun(x3 : num) { x4 } in

f5 x6

0

1

P

x1 : num:

2

P

f2 : num -> num:

x6f5

3

P

x3 : num:x4

Fig. 2. A program with nested lets

Before we consider the rule (SLTC-Id) and name reso-
lution, it can be helpful to visualize scope graphs using
scope graph diagrams. To distinguish different occurrences
of the same name in a program we subscript names in
programs by a position index. For example, the program
fun (x : num) { x } is written fun (x1 : num) { x2 }.
Fig. 2 shows an example program and its scope graph dia-
gram. Scopes are depicted by circles labeled with a number,
and edges between scopes are depicted as labeled edges l .
Scope #0 in the scope graph in Fig. 2 is the scope of the
context of the outer let. Scopes #1 and #2 are the scopes of
the first and second let, respectively. Scope #3 is the scope of
the function literal. The scopes are connected via P-labeled
edges to their lexical parent scope (thus P is for parent). Dec-
larations are depicted as boxes associated with scopes via
an : edge going from a scope to a declaration. Lastly, ref-
erences are depicted as boxes connected to scopes by edges
going from the reference to the scope. References are not formally part of the structure of scope

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 114. Publication date: November 2018.

114:8 Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and Eelco Visser

graphs (Fig. 1), but we include them in scope graph diagrams to indicate which scope each reference
is resolved relative to.

Reachability and Visibility. Now we can consider how variables in STLC are resolved in rule
(STLC-Id). The premise of the rule states that xi has type t if xi can be resolved in scope s through
path p leading to a declaration xj : t, such that there is no other declaration with a matching name
that shadows xj : t. The data well-formedness and label order used as parameters to resolve xi in
(STLC-Id) are defined in Fig. 3. The declarationwell-formedness predicateDECL(xi) is parameterized
by an identifier xi with position subscript i as input, and identifies the set of all declarations with
the same name as, but at positions different from, xi . The label well-formedness predicate for STLC
is P∗, which reflects that a variable can be resolved in any scope reachable through a sequence
of parent edges. Declarations are not ordered in STLC, and the ≤⊤ order passed as parameter to
the visibility judgment in (STLC-Id) is the order where all declarations are equal. The definition
$ <l P of the visibility ordering for STLC specifies that shorter paths are preferred over longer
paths. Thus, declaration in a scope that has a path with fewer P edges is preferred, which formalizes
the usual notion of shadowing based on on lexical proximity. For example, the reference x4 in

the program in Fig. 2 reaches x1 and x3 since DECL(x4),P
∗ ⊢ s3·P·s2·P·s1 : s3

: x1 : num and

DECL(x4),P
∗ ⊢ s3 : s3

: x3 : num. However, because s3 <p s3·P·s2, we have that x4 resolves to x3.

2.3 Records and Structural Subtyping

Next we consider an extension of STLC with structural records. The language defined in Fig. 4
extends STLC with record literals, field access, record extension, and a Pascal/JavaScript-like with
expression. Record types are structural, that is, record types are not identified by name, but by a set
of field-type pairs. The type system features subtyping between record types: a function expecting
a record as parameter can be provided any extension of the expected record type. We discuss how
to identify, represent, compose, access, and compare record types.

Identifying Record Types. In nominal type systems, types are identified by name. Information
about the type is associated with that name. For example, with scope graphs we can state s td

(Point, rPoint), which associates with the type name Point some representation rPoint of the record
type. A record type can then be represented as REC(Point) referring to the declaration of the type
by its name. Such a representation is efficient since copying the type entails copying a reference to its
representation. Furthermore, a type is directly related to its origin in a program. The disadvantage
of nominal types is that each variation of a type must be given a name and that comparisons must
be organized through relations between names. In structural type systems, types are identified by
their structure [Cardelli 1988]. This means that new types can be created ‘on the fly’, that is, not all
types have to be defined by name. In previous work, Van Antwerpen et al. [2016] show how to
represent nominal record types with scope graphs, but not how to express structural comparisons
and composition of such types. Here we show how to do that using scopes as types and scope
graph queries.

Representing Record Types. The representation of record types requires a mapping from field
names to types. Pierce [2002] uses association lists to represent record types. With scope graphs, we
do not need a new representation: scopes provide a natural representation for record types. For ex-
ample, the x coordinate of a Point type is represented as a declaration in the scope: sPoint

:
x : num.

Such a scope could be associated with a type name to realize a nominal type system, as discussed
above. To realize a structural type system, we use the scope reference itself as a type, and represent
a record type as REC(sr). A difference with the traditional representation of structural types as
association lists is that scopes have identity. Thus, copying types entails copying of references.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 114. Publication date: November 2018.

Scopes as Types 114:9

Syntax

expressions e ∈ Expr ::= . . . | { (x = e)∗} | e.x | e extends e | with e do e

syntactic types t ∈ TypeExpr ::= num | t -> t | { (x : t)∗}

semantic types T ,U ∈ Type ::= NUM | T → T | REC(s)

Resolution Syntax Parameters

labels l ∈ L ::= . . . | R | E and otherwise like STLC

Syntactic to Semantic Typing G ⊢ JtK ⇛ T

(T-Num)
⊢ JnumK ⇛ NUM

(T-Fun)
⊢ Jt1K ⇛ T1 ⊢ Jt2K ⇛ T2

⊢ Jt1 -> t2K ⇛ T1 → T2

(T-Rec)
⊢ Jt̄K ⇛ T̄ ∇sr sr

:
x̄i : T̄

⊢ J{ x̄i : t̄ } K ⇛ REC(sr)

Typing Rules (Records) G, s ⊢ e : T

(ERS-Rec)

s ⊢ ē : T̄
∇sr sr

:
x̄i : T̄

s ⊢ { x̄i = ē } : REC(sr)
(ERS-Access)

s ⊢ e : REC(sr)

DECL(xi), (R|E)
∗
, ≤⊤, <l ⊢ p : sr

: xj : T

s ⊢ e.xi : T

(ERS-Extends)
s ⊢ e1 : REC(s1) s ⊢ e2 : REC(s2) ∇sr sr

R s1 sr
E s2

s ⊢ e1 extends e2 : REC(sr)

(ERS-With)
s ⊢ e1 : REC(sr) ∇sw sw

R sr sw
P s sw ⊢ e2 : T

s ⊢ with e1 do e2 : T

Label Order l̂ <l l̂

$ <l P $ <l R $ <l E R <l P R <l E

Subtyping G ⊢ T <: T

(<:-Num)
⊢ NUM <: NUM

(<:-Fun)
⊢ T2 <: T1 ⊢ U1 <: U2

⊢ T1 → U1 <: T2 → U2

(<:-Rec)

∀xi p xj T .DECL(xi), (R|E)
∗
, ≤⊤, <l ⊢ p : s2

: xj : T =⇒

∃p ′ U xk .DECL(xi), (R|E)
∗
, ≤⊤, <l ⊢ p

′ : s1
: xk : U ∧ ⊢ U <: T

⊢ REC(s1) <: REC(s2)

Fig. 4. Syntax and typing rules for a language with extensible records. The expression syntax is extended

from Fig. 3. The typing rules for functions are mostly the same as in Fig. 3

Since scopes are not part of the surface syntax of types, Fig. 4 defines two notions of types:
syntactic types and semantic types for use in typing rules. Fig. 4 defines a relation ⊢ JtK ⇛ T that
relates a syntactic type t to a corresponding semantic type T . In particular, the (T-Rec) rule defines
how a syntactic record type is related to a scope with a declaration for each field in the record type.
We use the vector notation x̄ to denote sequences and point-wise application. The mapping from
syntactic to semantic types is used in the (ERS-Fun) rule (not shown) to convert the syntactic type
annotation on the formal parameter. The (ERS-Rec) rule asserts that a record literal is typed by a
scope that has a declaration for each field name in the list, inferring the type from the initialization
expression. In the (T-Rec) and (ERS-Rec) rules we have omitted the assertion that field names of
record types need to be unique. This can be expressed with a scope graph query that requires that
a field name reference in the record scope resolves to a single declaration.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 114. Publication date: November 2018.

114:10 Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and Eelco Visser

Composing Record Types. Traditional type environments and scope graphs can be considered
as a kind of explicit substitution [Abadi et al. 1991]. The difference between the approaches is in
their treatment of extension of substitutions. For example, consider the e1 extends e2 form, which
creates a record by extending the record computed by e2 with the record fields computed by e1. In
a variation on the definition by Pierce [2002], we allow a record extension to shadow fields from
the extended record. Using type environments as record types, with the operator Γ1 ◁ Γ2 eagerly
defined to compose two environments such that bindings in Γ2 shadow those in Γ1, the typing rule
for extends can be defined as follows:

(Γ-Extends)
Γ ⊢ e1 :{xi:Ti

i ∈1..n} Γ ⊢ e2 :{xi:Ti
j ∈1..m}

Γ ⊢ e1 extends e2 :{xi:Ti
j ∈1..m

◁ xi:Ti
i ∈1..n}

So, the expression {x = 1, y = 2} extends {x = {z = 4}} has type {x : num, y : num}. A
context resulting from a shadowing extension Γ1 ◁ Γ2 loses information about the structure of the
original Γ1, because it eagerly merges the two substitutions.

1

2
E

3
R

x : REC(. . .):

x : NUM: y : NUM

:

Fig. 5. Record extension

By contrast, a scope graph representation retains the structure
of the composition. Consider rule (ERS-Extends) in Fig. 4, which
defines the extends form by creating a new record type REC(sr)
with scope edges to the record types of the two branches. The
R edge in (ERS-Extends) makes the bindings in the s1 scope for
the record extension reachable from sr . Similarly, the E edge makes the bindings in the s2 scope
reachable from sr . Fig. 5 shows the resulting scope graph for the expression above. Thus, extensions
are represented as edges that preserve the structure of the substitutions being merged.

let r1 = {a2 = 23, b3 = {. . .}} in

let q5 = {b6 = 19} extends r7 in

let f8 = fun (p9 : {b10 : num}){p11.b12} in

f13 q14 + q15.b16

1 r1 : REC(2): 2

a2 : NUM
:

b3 : REC(3)
:

3

P

r7

4 5 b6 : NUM:q5 : REC(4):

E

R

6

Pf13

q14

q15

f8 : REC(8) → NUM:

7

P

p9 : REC(8):

p11

8 b10 : NUM:

b12

b16

Fig. 6. A program with records and functions

The (ERS-With) rule shows a vari-
ation of this pattern. The form
with e1 do e2 (inspired by the dep-
recated JavaScript construct) makes
the fields of the record computed by
e1 available as local variables in e2.
This is modeled by the (ERS-With)
rule by creating scope edges from the
scope sw for the body e2 to the record
scope via an R edge and to the lexical
parent scope via a P edge.

Accessing Record Types. Field ac-
cess e.x is an example of type-

dependent name resolution where a
name is resolved relative to a type.
The first premise of rule (ERS-Access)
requires the expression e to have
a record type REC(sr). The second
premise resolves the field x relative
to the scope sr of that type using the

resolution query DECL(xi), (R|E)
∗
, ≤⊤, <l ⊢ p : sr

: xj : T . The declaration well-formedness
predicate DECL(xi) is defined in Fig. 3, and path well-formedness is given by a regular expression
stating that resolution may follow any path via R and E edges. Record fields can also be accessed
using plain variables due to the with form. Since variables may also be defined in lexical parents,
the well-formedness for variable resolution first traverses a series of lexical parent edges before

considering record (extension) edges: DECL(xi), (P
∗(R|E)∗), ≤⊤, <l ⊢ p : sr

: xj : T .

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 114. Publication date: November 2018.

Scopes as Types 114:11

Syntax

names C, D, E, f, g, m, n,x ∈ Name := some countable set

class definitions L ∈ ClassDecl ::= class C extends C {(C f;)∗ K M∗ }

constructors K ∈ KDecl ::= C((C f)∗) { super(f∗); (this.f=f;)∗ }

methods M ∈ Methods ::= C m((C x)∗) { return e; }

expressions e ∈ Expr ::= x | e.f | e.m(e∗) | new C(e∗) | (C)e

semantic type T ,U ,V ∈ Type ::= INST(s)

method type M ∈ MethType ::= T ∗ → T

class types L ∈ ClassType ::= CLASS(s)

Resolution Syntax Parameters

labels l ∈ L ::= P | S

relations r ∈ R ::= : | K

data terms d ∈ D ::= C : L | m : M | this : T | x : T | T̄

Fig. 7. Syntax for Featherweight Java

The visibility ordering <l in Fig. 4 states that record edges (R) are preferred over both lexical
parent edges (P) and extension edges (E). Consequently, declarations in record scopes shadow
lexical bindings (as intended for with expressions), and extended record scope bindings (as intended
for extends expressions). Consider the resolution of the field access q15.b16 in Fig. 6. The variable
q15 is resolved relative to scope #6 to q5 with type REC(4). Hence, field b16 is resolved relative to
scope #4 from which two declarations can be reached: b3 and b6. Since R <l E, the latter is selected.

Comparing Record Types. Finally, we consider the definition of subtyping for structural record
types. When a record of type REC(s2) is expected we may provide a record of type REC(s1) provided
that REC(s1) has at least all the fields of REC(s2). This is expressed using the resolution calculus
by means of querying the visible fields of the scopes of the super type and sub type. The (<:-Rec)
rule in Fig. 4 asserts that for each declaration xi with type T visible in scope s2 of the super type,
xi resolves to a declaration of type U in scope s1 of the sub type, and that U <: T . The (<:-Rec)
rule corresponds to traditional structural record subtyping [Pierce 2002, Fig. 16-1]. For example,
consider the function application f13 q14 in Fig. 6. f13 resolves to f8 with type REC(8) → NUM and
q14 resolves to q5 with REC(4). The rule for function application (omitted) adapts (STLC-App) to
require that the type of the actual parameter is a subtype of the type of the formal parameter. (This
is the only rule using the subtype relation.) This is the case in our example since REC(4) <: REC(8):
the b6 field visible in scope #4 matches the b10 field of scope #8.

Summary. A crucial difference between scope graphs and association lists is that association lists
represent an eager name shadowing policy (applied before doing name resolution), while scope
graphs support a lazy name shadowing policy (applied during name resolution). The scopes as
types approach scales to type systems with binding patterns that go beyond lambdas and records,
including type systems for languages with classes; association lists alone do not.

2.4 Classes and Nominal Subtyping: Featherweight Java

Next we consider a type system for classes with subtyping, specifically for Featherweight Java (FJ)
[Igarashi et al. 2001]. We show how nominal class identity and subtyping is characterized by scope
identity and paths in the scope graph. The syntax and typing rules of FJ using scope graphs is
summarized in Fig. 7 and 8. Assuming some familiarity with FJ, we summarize the main highlights.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 114. Publication date: November 2018.

114:12 Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and Eelco Visser

Syntactic to Semantic Typing G, s ⊢ JCiK ⇛ T

(T-Class)
DECL(Ci),P

∗
, ≤⊤, <l ⊢ s

: Cj : CLASS(sc)

s ⊢ JCiK ⇛ INST(sc)

Class Typing G, s ⊢ L ok

(FJ-Class)

s :
Ci : CLASS(sc) sc

P s DECL(Dj), ϵ, ≤⊤, <l ⊢ p : s : Dk : CLASS(sd)
∇sc sc

S sd sc ⊢ C̄h f̄j; K ok sc ⊢ M̄д ok

s ⊢ class Ci extends Dj { C̄h f̄j; K M̄д } ok

Field and Constructor Typing G, s ⊢ C̄ f̄; K ok

(FJ-FldK)

DECL(Cz),P, ≤⊤, <l ⊢ s
: Cu : CLASS(s) s ⊢ JD̄iK ⇛ T̄ WFD⊤, S, ≤⊤, <l ⊢ p : s K T̄

s ⊢ JC̄x K ⇛ Ū s ⊢ JĒk K ⇛ V̄ Ū = V̄ s :
f̄m : Ū s K T̄ , Ū ḡj ≃ ḡh

s ⊢ C̄x f̄y; Cz(D̄i ḡj,Ēk f̄д){super(ḡh); this.f̄m=f̄n} ok

Method Typing G, s ⊢ M ok

(FJ-Method)

s ⊢ JD̄k K ⇛ T̄ s ⊢ JCiK ⇛ T s :
mj : T̄ → T ∇sm

sm
P s sm

:
x̄д : T̄ sm

:
this : INST(s) sm ⊢ e : U ⊢ U <: T

if (DECL(mj), S
+
, ≤⊤, <l ⊢ p : s : nh : V̄ → V) then T̄ = V̄ and T = V

s ⊢ Ci mj(D̄k x̄д) { return e; } ok

Expression Typing G, s ⊢ e : T

(FJ-Var)
DECL(xi),P

∗S∗, ≤⊤, <l ⊢ p : s : xj : T

s ⊢ xi : T
(FJ-Field)

s ⊢ e : INST(sc)

DECL(fi), S
∗
, ≤⊤, <l ⊢ p : sc

: fj : T

s ⊢ e.fi : T

(FJ-Invk)
s ⊢ e : INST(sc) DECL(mi), S

∗
, ≤⊤, <l ⊢ p : sc

: Ū → T s ⊢ ē : V̄ ⊢ V̄ <: Ū

s ⊢ e.mi(ē) : T

(FJ-New)

DECL(Ci),P
∗
, ≤⊤, <l ⊢ s

: Cj : CLASS(sc) s ⊢ ē : T̄

WFD⊤, ϵ, ≤⊤, <l ⊢ p : sc
K Ū ⊢ T̄ <: Ū

s ⊢ new Ci(ē) : INST(sc)

(FJ-UCast)
s ⊢ e : T s ⊢ JCiK ⇛ U ⊢ T <: U

s ⊢ (Ci)e : U
(FJ-DCast)

s ⊢ e : T s ⊢ JCiK ⇛ U ⊢ U <: T U , T

s ⊢ (Ci)e : U

(FJ-Stupid)
s ⊢ e : T s ⊢ JCiK ⇛ U ⊢ T ̸<: U ⊢ U ̸<: T stupid warning

s ⊢ (Ci)e : U

Subtyping G ⊢ T <: T

(<:-Class)
⊢ p : s1 ↠ s2 p ∈ S∗

⊢ INST(s1) <: INST(s2)

Label Order and Data Well-Formedness l̂ <l l̂ d ∈ DECL(xi) d ∈ WFD⊤

$ <l P $ <l S
xi ≃ xj

(xi : T) ∈ DECL(xj) d ∈ WFD⊤

Fig. 8. Typing rules for Featherweight Java

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 114. Publication date: November 2018.

Scopes as Types 114:13

Class Tables. The original presentation of FJ relies on various data structures for name resolution,
notably class tables, type contexts, and the AST of classes themselves. Names are mapped to class
definitions via the class table. In turn, the class table is used in auxiliary relations that define how
to retrieve association lists of names and types for class members, by traversing the AST of classes.
Thus, classes are used as a data structure since they are not reducible to a simple association list
representation. But the AST of FJ programs is not an ideal data structure for reuse to define name
resolution for other languages with nominal subtyping. For such languages we would have to
re-specify similar auxiliary relations to do name resolution using a different AST. We show how
the definition of a class table data structure is subsumed by the use of scope graphs.

Syntactic and Semantic Types. FJ has a single kind of syntactic type, namely class names ranged
over by C. The corresponding semantic type of a class name C is an INST(s) type where s is the scope
of the class declared as C. The (T-Class) rule in Fig. 8 translates a syntactic type to a semantic type
by resolving the name in the lexical context by following a sequence of P edges. The łrootž scope
is similar to a class table: it binds all class declarations that a program defines and is a dominating
lexical context for all classes in a program. Whereas INST(s) represents an instance of the class
identified by scope s in the scope graph, the class type CLASS(s) represents the definition of the
class s , and is the type of declarations in the łrootž scope.

class A1 { T f2; }

class B3 extends A4 { . . . }

class C5 extends B6 { . . . }

class D7 { . . . new C8().f9 . . . }

A1 : CLASS(1) 1 f2 : T:

B3 : CLASS(2) 2

S

C5 : CLASS(3) 3

S

D7 : CLASS(4)

4

f9

C8

0

:

:

:

:

P

Fig. 9. Classes with inheritance. The P edges

from scopes #1, #2, #3 to scope #0 have been

omitted.

Class Typing. The structure of a class is reflected in
the scope graph. The (FJ-Class) rule declares the name
of a class (C) as being typed by the scope that defines it
(sc) in the łrootž scope of a program (s). The rule omits
the assertion that field and record names are unique in a
class. (The : relation is overloaded to associate names
with either semantic types, class types, or method types.
It is always clear from the context which kind of type a
name is associated with.) The (FJ-FldK) rule asserts that
fields and constructors are associated with class scopes,
where the constructor parameter types are recorded us-
ing the relation K . To resolve the parameter types of a
constructor we use a trivially true well-formedness pred-
icate WFD⊤ in (FJ-FldK). The (FJ-Method) rule asserts
that well-typed methods are associated with the class
scope, and that overriding methods have the same type
signature as the overridden methods in super classes.
Fig. 9 shows a program with four classes, and the

scope graph of this program. Each class has a name that
is typed as a CLASS(s) where s is the scope of the class. Class scopes have a declaration for each
member. For example, A1 is associated with the class scope that has a single declaration f2 of type
T (a semantic type of T). Class scopes are connected to the scope of their super class via an edge
labeled S (for super) which makes the class members in super classes reachable via name resolution.
S edges are the result of resolving the extends clauses of classes (FJ-Class). For example, the class
scope for B is connected to the class scope of A because A4 in the program resolves to A1. (For brevity
we have omitted the extends clause references from the scope graph diagram.) Thus scopes directly
represent and expose the inheritance structure of classes.

Expression Typing. The expression typing rules in Fig. 8 stay close to the original presentation of
FJ by Igarashi et al. [2001]; we discuss the generalizations we have made. The (FJ-Var) rule matches

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 114. Publication date: November 2018.

114:14 Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and Eelco Visser

paths that either traverse a sequence of lexical parent edges, which makes formal parameters
of methods as well as local fields reachable, or traverse a sequence of super edges which makes
fields in super classes reachable. Thus, unlike the original presentation of FJ, field access need not
happen via a qualified field access expression. The (FJ-New) rule for new expressions dereferences
the constructor method of a class by resolving the K relation in the class scope sc ; ϵ denotes the
empty regular expression, which matches a 0-step path.

Subtyping. Nominal subtyping allows the use of a sub-class in the place of any of its super classes:
if A is a super type of B, then B can be used anywhere an A is expected. The scope graph affords a
straightforward characterization of this subtype relationship: any class member declaration that is
reachable from the class scope of A is also reachable from the inheriting class scope of B, because
their scopes are connected via an S edge. In other words, using scopes as types lets us define
nominal subtyping as path connectedness in a scope graph, as defined by (<:-Class) in Fig. 8.

2.5 Parametric Polymorphism

Parametric polymorphism characterizes types that are parameterized by other types and that can
be instantiated by substitution. Thus to support parametric polymorphism when the structure of
types is given by scopes, we need a notion of substitution over scopes in a scope graph. There are
several ways to approach this task. A naive definition of a substitution function would eagerly
traverse the structure of a scope graph to substitute named references that occur in the graph.
Conceptually, this eager approach produces a new scope graph where some identifiers have been
substituted. In other words, the approach duplicates parts of the scope graph. Our goal is to support
the implementation of practical type checkers, so we prefer a substitution strategy that does not
require inefficient duplication of scopes and scope graphs.

We present an approach based on scopes with explicit substitutions that are lazily applied during
name resolution, as opposed to eager application before name resolution. We illustrate the approach
with a specification of the type system of System F in Fig. 10. System F extends the simply-
typed lambda calculus with explicitly parameterized types, type quantification expressions, and
type application expressions. With the exception of parameterized types (X => t), the types in
System F are rather simple and absent of name binding. As such it is not a language where scopes
are an obviously well-suited choice of representation for types. Yet the same pattern of type
parameterization occurs in languages with more interesting types, such Featherweight Generic
Java (FGJ), the extension of Featherweight Java with generics [Igarashi et al. 2001]. We use System
F as an example language which illustrates the approach to parametric polymorphism using scopes
as types, and discuss how this approach scales to FGJ.

Syntactic and Semantic Types. There are two new kinds of syntactic and semantic types in Fig. 10,
as compared with Fig. 3. Syntactically, X => t denotes a forall type that quantifies a type t over
another type, ranged over by the named parameter X. The corresponding semantic ALL(X, s) type
quantifies a scope over a type. The (T-All) rule in Fig. 10 asserts that the scope sa of a semantic
forall type is: (1) connected to the lexical context scope s; (2) associated with the declared type
variable using the V relation; and (3) associated with the semantic type in the body of the forall
type via the B relation. Semantic forall types are reminiscent of how parameterized types are
represented in the Dependent Object Types (DOT) calculus [Amin et al. 2016; Amin and Rompf
2017], where a parameterized type can be represented as a two-field record with an abstract type
field (V), and another field whose type may contain named references to the abstract type field.
(Indeed, the scopes-as-types approach was inspired by the treatment of type parameters in DOT.)

Rule (T-Var) defines the semantic type of a type variable reference Xi to be the type variable
declaration Xj that the reference resolves to and that uniquely identifies a declared type parameter.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 114. Publication date: November 2018.

Scopes as Types 114:15

Syntax

type identifiers X ∈ TypeId := some countable set

expressions e ∈ Expr ::= . . . | Fun(X) { e } | e [t]

syntactic types t ∈ Type ::= . . . | X => t | X

semantic types T ,U ,V ∈ Type ::= . . . | ALL(X, s) | X | πB(s)

Resolution Syntax Parameters

labels l ∈ L::= . . . | I and otherwise like STLC

Syntactic to Semantic Typing G, s ⊢ JtK ⇛ T

(T-All)

∇sa sa
P s sa

V Xi

sa ⊢ JtK ⇛ T sa
B T

s ⊢ JXi => tK ⇛ ALL(Xi , sa)
(T-Var)

DECL(Xi),P
∗
, ≤⊤, <l ⊢ p : s V Xj

s ⊢ JXiK ⇛ Xj

Expression Typing (Selected Rules) G, s ⊢ e : T

(F-All)

∇sa sa
P s sa

V Xi

sa ⊢ e : T sa
B T

s ⊢ Fun(Xi) { e } : ALL(Xi , sa)
(F-TApp)

s ⊢ e : ALL(Xi , sa) s ⊢ JtK ⇛ T
∇sk sk

I sa sk
σ

Xi :=T

s ⊢ e [t] : πB(sk)

(F-Strict)
s ⊢ e : T ⊢ T ⇒ U

s ⊢ e : U

Type Normalization G ⊢ T ⇒ T G,p ⊢ T Û⇒ T

(Strict-Pi)

WFD⊤, I
∗
, ≤⊤, <l ⊢ p : s B T
p ⊢ T Û⇒ U

⊢ πB(s) ⇒ U
(Strict-NotPi)

T , πB(s)

⊢ T ⇒ T
(N-Pi)

⊢ πB(s) ⇒ T p ⊢ T Û⇒ U

p ⊢ πB(s) Û⇒ U

(N-Done)
s ⊢ T Û⇒ T

(N-Num)
p ⊢ NUM Û⇒ NUM

(N-Fun)
p ⊢ T1 Û⇒ T2 p ⊢ U1 Û⇒ U2

p ⊢ T1 → U1 Û⇒ T2 → U2

(N-All)

WFD⊤, ϵ, ≤⊤, <l ⊢ p
′ : sk

σ Xj :=T s ′
k

I sa
∇s ′

k
p ⊢ ALL(Xi , s

′
k
) Û⇒ T s ′

k
σ

Xj :=T

p·I·sk ⊢ ALL(Xi , sa) Û⇒ T
(N-Var)

WFD⊤, ϵ, ≤⊤, <l ⊢ p
′ : sk

σ Xj :=T
if Xi = Xj thenU = T elseU = Xi

p ⊢ U Û⇒ V

p·I·sk ⊢ Xi Û⇒ V

Semantic Type Equality G ⊢ T � T

(Eq-Num)
⊢ NUM � NUM

(Eq-Fun)
⊢ T1 � T2 ⊢ U1 � U2

⊢ T1 → U1 � T2 → U2
(Eq-Var)

Xi = Xj

⊢ Xi � Xj

(Eq-All)

∇s ′1 s ′1
I s1 s ′1

σ
Xi :=X

∇s ′2 s ′2
I s2 s ′2

σ
Xj :=X

⊢ πB(s
′
1) � πB(s

′
2) ∇X

⊢ ALL(Xi , s1) � ALL(Xj , s2)
(Eq-Pi1)

⊢ πB(s) ⇒ U
⊢ U � T

⊢ πB(s) � T
(Eq-Pi2)

⊢ πB(s) ⇒ U
⊢ T � U

⊢ T � πB(s)

Label Order l̂ <l l̂

$ <l P $ <l I

Fig. 10. Syntax and typing rules for System F (expressions and syntactic types extend Fig. 3)

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 114. Publication date: November 2018.

114:16 Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and Eelco Visser

Expression Typing. Fig. 10 summarizes the typing rules for the syntactic forms that introduce forall
types (Fun(Xi) { e }) and eliminate forall types (e [t]). The introduction rule (F-All) is similar
to the (T-All) rule. The (F-TApp) rule asserts that there is an instantiation scope sk with an explicit

substitution of the parameter Xi by the argument typeT . This instantiation scope is associated with
the scope of the forall type via an instantiation edge I . Instead of eagerly propagating the explicit
substitution, the (F-TApp) rule returns a type πB(s) representing a delayed projection of the body of
a semantic forall type. When needed, we apply strictness (discussed below) to normalize projections.
Not shown in Fig. 10 are the rules for the STLC fragment of System F. The only difference from
Section 2.2 is that function application uses semantic type equality, which we also discuss below, to
require that the type of the actual parameter matches the type of the formal parameter.

Type Normalization. Strictness ⊢ T ⇒ U forces the application of delayed projections that
occur in the head position of T to obtain a normalized type U . Projections are applied by using
the resolution calculus in (Strict-Pi) to resolve the nearest B relation through a sequence of
instantiation scopes (which correspond to delayed and explicit substitutions), and then normalizing
the resolved type with respect to each instantiation scope.

The (N-Done) rule matches on a path consisting of a single scope, that is, a 0-step path. The two
most interesting rules for normalization are the (N-All) rules and the (N-Var) rules. The (N-All) rule
normalizes a forall type by matching on a path in reverse order (i.e., the order in which sequenced
instantiation scopes have been created), to augment the scope of a forall-type with each explicit
substitution found along the projection path. The (N-Var) rule also matches on paths in reverse
order and resolves the substitution in the instantiation scope sk . The substitution is only applied if
the resolved substitution is for a type variable parameter Xj that is syntactically equal to the variable
Xi being normalized; that is, the position subscripts on the identifiers must match. Because we use
the declaration identifiers as the semantic type of type variable references, we avoid problems with
shadowing and name capture. Consider, for example, how type normalization applies to the term
(Fun (A1) { Fun (A2) { fun (x3 : A4) { x5 } } }) [num]. The substitution A1 := num will be
recorded in the semantic forall type that is returned, but will never substitute the semantic type of
the reference in the innermost Fun (i.e., A2) because it has a different position subscript.

Semantic Type Equality. Fig. 10 also defines a notion of semantic type equality between semantic
types. The most interesting rule is the (Eq-All) rule for forall types. The premises of this rule assert
that we create instantiation scopes which substitute the parameter names by the same identifier X
where X is chosen to be fresh. We then compare the result of projecting the body of the semantic
forall types in the context of these instantiation scopes. This parameter instantiation makes alpha-
equivalent forall types match. The (Eq-Var) rule equates type variables by using syntactic equality.
Projections are compared by applying strictness as defined by the rules (Eq-Pi1) and (Eq-Pi2).

From System F to Generic Classes in FGJ. The typing rules in Fig. 10 define an approach to substi-
tution in scopes that does not require inefficient duplication of scopes and scope graphs. Instead of
eagerly propagating substitutions, which result in duplicating scope graphs, we record delayed and
explicit substitutions in the scope graph, thereby sharing scopes between different type parameter
instantiations. This approach scales to languages where types have interesting binding structure,
such as Featherweight Java with generic classes, FGJ. For brevity, we omit the full specification of
the type system for FGJ and instead discuss an illustrative example program and its corresponding
scope graph diagram. The artifact accompanying this paper contains implementations of type
checkers for both System F and FGJ in Statix.
Fig. 11 shows a program with a class definition A with a type parameter X and a single field f,

typed with the type parameter X. The program also contains two instantiations of A with different

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 114. Publication date: November 2018.

Scopes as Types 114:17

type arguments. The field accesses m7.f8 and n9.f10 both resolve to the field in A. However, their
type should be considered relative to the specific instantiation of the type parameter. That is, m7.f8
has type T and n9.f10 has type S (for some types T and S).

class A1<X2> { X3 f4; }

. . .

m5 = new A6<T>();

m7.f8;

n9 = new A10<S>();

n11.f12;

1A1 : CLASS(1)

X2: X2

:

X3

f4 : X2:

3

I

X2 := T σ

f8

4

I

X2 := Sσ

f12

2m5 : INST(3) : n9 : INST(4):

Fig. 11. Generic class with two instantiations

The scope graph in Fig. 11 illustrates how
generic class instantiation is modeled using scope
graphs: each generic class instantiation is modeled
as an instantiation scope (scopes #3 and #4 in the
figure). The instantiation m5 = new A6<T>() gives
rise to scope #3 with the substitution X2 := T. As
in System F, delayed substitutions are applied to
field types once a field is accessed, as opposed to
eagerly when the class is initialized. By delaying
the substitution as an instantiation scope we save
having to duplicate the entire class scope when
we instantiate the generic class A with a different
generic type argument S. The class members of the
class scope for A (scope #1) remain reachable via
the I-labeled instantiation edge between scope #3
and scope #1.

2.6 Discussion

As argued above, scope graphs provide a data
structure for name binding and resolution that
does not prematurely optimize for particular binding patterns. We have shown that scope graphs
can deal with type systems with parametric polymorphism in a way that also does not prematurely
optimize for particular binding patterns. By recording substitutions explicitly in the scope graph
we retain a history of substitutions to be applied to a type, and only during resolution of a particular
relation do we actually apply the substitutions. This avoids duplication of scope graphs, and makes
the approach promising for languages that do normalization during type checking for types with
rich binding structure. It also shows that scope graphs and the revised resolution calculus presented
in Section 2.1 provide a theory for name binding and name resolution in type systems that scales
to languages beyond the relatively simple type systems that scope graphs were demonstrated to
work previously [Néron et al. 2015; Poulsen et al. 2016, 2018; van Antwerpen et al. 2016].

The notions of normalization and semantic type equality in Fig. 10 are inductively defined
over the syntax of types, which is language specific. Our goal with scope graphs is to develop
tools that are reusable between different languages. From this perspective it is not ideal that type
normalization and semantic type equality is defined in a language-specific way. The notions of
type normalization and semantic type equality that we have defined for System F and FGJ follow a
similar pattern which indicates the existence of a schema for automatically generating notions of
strictness and type equality. An alternative would be to augment the resolution calculus to support
applying substitutions along a path.
Typing rules that use scope graphs are close to traditional type system rules such as those

found in textbooks like Pierce’s [2002]. Some rules that use scope graphs are less concise than
traditional rules due to the explicit passing of parameters to the resolution calculus, but we argue
that this source of verbosity is outweighed by the benefits afforded by scope graphs: uniform
treatment of name binding that does not prematurely optimize for particular binding patterns. The
distinction between syntactic and semantic types found in type systems using scopes as types is
rarely made in traditional type system specifications, although it is not uncommon in type system

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 114. Publication date: November 2018.

114:18 Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and Eelco Visser

implementations where, for example, de Bruijn indices are commonly used to represent bindings in
types. Formal definitions of type equality and substitution are commonly omitted from traditional
type system specifications by alluding to the existence of a łstandardž substitution function and
alpha renaming scheme. Nevertheless, type system implementations must implement these notions.
Thus the additional (as compared with traditional type system specification) rules for syntactic to
semantic typing, type equality, and type substitution all help bridge the gap between type system
specification and type system implementation, which is the goal that this work is pursuing.

3 STATIX: SPECIFICATIONWITH SCOPES AND CONSTRAINTS

Type systems written in the style of the previous section do not immediately give us executable
implementations. In this section we introduce Statix, a specification language to develop type
checkers with scope graphs, which has precise declarative and operational interpretations. Rules
in Statix are close to the inference rules of the previous section, but the language makes several
finer points of those rules, that we glossed over before, precise. We explain the language using an
example specification and define a formal declarative semantics.

Statix by Example. The formal syntax of Statix is defined in Fig. 13. A Statix program consists
of a collection of user-defined constraint rules, together with a top-level constraint. Rules must
be syntax-directed, with non-overlapping guards, and are expressed in terms of equality, scope
graph based name resolution, and user-defined constraints. We introduce the language using the
constraint rules in Fig. 12, which define the simply-typed lambda calculus of Fig. 3.
The typing relation s ⊢ e : T is expressed as the user-defined constraint typeOfExp(s, e,T).

Analogous to Fig. 3, Fig. 12 defines a rule for each expression form. A rule of the form c(t̄) ← C

states that a constraint matching the head c(t̄) holds, if the body constraint C holds. Constraints
are combined using conjunction C ∧C . The body of a rule may invoke user-defined constraints by
applying the predicate name to a list of terms c(t̄). For example, the rule

typeOfExp(s, e1 + e2,T) ← T = num ∧ typeOfExp(s, e1, num) ∧ typeOfExp(s, e2, num)

uses typeOfExp to constrain the types of the sub-expressions. All variables matched in the head
are bound in the body of a rule. Local variables are introduced using ∃v .C . For example, the rule
for fun introduces local variables for the return type T2 and the function scope sf.

For ease of reading, we define each predicate using a set of rules and inline matches in the rule
head. This desugars to a single rule using guarded choice G ? C : C in the formal syntax:

typeOfExp(s, e,T) ← (e = z ? T = num : (e = e1 + e2 ? . . . : (. . . ? . . . : ⊥)))

typeOfExp(s, z,T) ← T = num

typeOfExp(s, e1 + e2,T) ← T = num ∧ typeOfExp(s, e1, num) ∧ typeOfExp(s, e2, num)

typeOfExp(s, fun(xi:T1){ e },T) ← ∃T2 . ∃sf. T = FUN(T1, T2) ∧

∇sf ∧ sf
P s ∧ sf

:
(xi ,T1) ∧ typeOfExp(sf, e,T2)

typeOfExp(s, xi ,T) ← xi in s : (xj , [T |[]])

typeOfExp(s, e1 e2,T2) ← ∃T1 . typeOfExp(s, e1, FUN(T1, T2)) ∧ typeOfExp(s, e2,T1)

typeOfExp(s, let x = e1 in e2,T2) ← ∃T1 . ∃sb. typeOfExp(s, e1,T1) ∧

∇sb ∧ sb
P s ∧ sb

:
(xi ,T1) ∧ typeOfExp(sb, e2,T2)

Fig. 12. Statix specification for a simply-typed lambda calculus using scope graphs

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 114. Publication date: November 2018.

Scopes as Types 114:19

Signature

function symbols f ,д ∈ F with arity(f) ∈ N

predicates symbols c,d ∈ C with arity(c) ∈ N

Definitions

term variables x ∈ V := some countable set

terms t ,u ∈ T ::= x | f (t̄) | s | p | l | [] | [t |t] | (t , t)

guards G ∈ Guards ::= ⊤ | G ∧G | t = t | ∃x .G

constraints C ∈ C ::= ⊤ | ⊥ | t = t | C ∧C | c(t̄) | ∃x .C | G ? C : C | ∇t | t l t

| t r t | query (c(t̄), c(t̄), c(t̄), c(t̄)) in t r t | t ∽P re

predicates pred ∈ Preds ::= c(ȳ) ← C

program P ∈ Progs ::= let pred∗ in C

Fig. 13. Syntax of Statix

Definitions substitution φ,θ : V → t scope support S ⊆ S

Constraint satisfaction G,φ |=S C

(DS-True)
G,φ |=S ⊤

(DS-Eq)
t1φ = t2φ

G,φ |=S t1 = t2
(DS-Conj)

G,φ |=S1 C1 G,φ |=S2 C2

G,φ |=S1⊔S2 C1 ∧C2

(DS-Disj-L)
G,φ |=∅ G G,φ |=S C1

G,φ |=S G ? C1 : C2

(DS-Disj-R)
G,φ ⊭∅ G G,φ |=S C2

G,φ |=S G ? C1 : C2

(DS-Pred)
(c(x̄) ← C) ∈ P G,φ |=S C [t̄/x̄]

G,φ |=S c(t̄)
(DS-RegExp)

tφ = l̄ l̄ in language of re

G,φ |=S t ∽P re

(DS-Exists)
G,φ[t/x] |=S C x is fresh for φ

G,φ |=S ∃x .C
(DS-Fresh)

tφ = s s ∈ S

G,φ |=S ∇t

(DS-Edge)

t1φ = s1 t2φ = s2
(s1

l s2) ∈ edges(G)

G,φ |=S t1
l t2

(DS-Rel)
t1φ = s (s r t2φ) ∈ data(G)

G,φ |=S t1
r t2

(DS-Resolve)

WFD :=
{

d | G,φ |=∅ cwfd (u1, ...,un ,d)
}

WFL :=
{

l̄ | G,φ |=∅ cwfl(u
′
1, ...,u

′
n , l̄)

}

d ≤d d ′ := G,φ |=∅ c≤d (v1, ...,vm ,d,d
′) l <l l

′ := G,φ |=∅ c<l (v
′
1, ...,v

′
m , l , l

′)

t1φ = s (p, t) ∈ t2φ ⇐⇒
(

WFD,WFL, ≤d , <l ,G ⊢ p : s r t
)

no duplicates in t2φ

G,φ |=S query
(

cwfd (u1, ...,un), cwfl(u
′
1, ...,u

′
n), c≤d (v1, ...,vm), c<l (v

′
1, ...,v

′
m)

)

in t1
r t2

Fig. 14. Declarative semantics of Statix

Guarded choice is committed choice: for G ? C1 : C2, either G and C1 hold, or G does not hold and
C2 holds. Thus, ifG holds,C2 is never considered. Guards are restricted to existential quantification
and term equality, to ease reasoning about coverage and non-overlapping rules.
Syntactic equality is expressed with the equality constraint t1 = t2. For example, it is used to

constrain the type to num in the rules for z and +. Note that these types are written inline in the

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 114. Publication date: November 2018.

114:20 Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and Eelco Visser

judgments of Fig. 3. Logically, they are equivalent, but, operationally it matters whether terms
appear in the body, or in the head, where they are used for rule selection (see Section 4.1).

Three constraints assert facts about the scope graph. The constraint ∇t (pronounced: t is fresh) is
satisfied if the scope value t is different from scope values t ′ that appear as ∇t ′ elsewhere. As such,
one can think of this as claiming exclusive ownership of the scope. An edge constraint t1

l t2
asserts the existence of an l edge from t1 to t2. Similarly, a data constraint t1

r t2 asserts the
existence of a t2 value in the relation r in scope t1. Using these constraints, the rules in Fig. 12 for
function and let expressions specify their local scope, its parent edge, and the binding declaration.
Finally, resolution constraints specify queries on the scope graph. A resolution constraint

query
(

cwfd(ū), cwfl(ū), c≤d (ū), c<l (ū)
)

in t1
r t2 states that resolving the relation r in scope t1,

results in t2. The well-formedness and order predicates correspond to the parameters of the resolu-
tion calculus defined in Fig. 1. The well-formedness and order predicates can be partially applied,
to make resolution context aware.
For example, the variable rule uses the short-hand notation xi in s : (x j ,T) for resolving data

from a reference occurrence, which corresponds to query (wfd(xi),wfl, ordd , ordl) in s : (x j ,T).
The data well-formedness is partially applied to the reference xi , and the result of resolution must
be a single declaration-type pair. The label well-formedness wfl and data well-formedness wfd are
defined with the rules wfl(xi , ls) ← ls ∽P P∗ and wfd(xi ,yj) ← x = y. The label order is defined in

terms of the match constraint t ∽P re, which states that the list of labels t must match the regular
expressions re. The label order ordl and data order ordd define a lexical ordering with the rules
ordl ($,P) ← ⊤ and ordd (xi ,yj) ← ⊤.

Declarative Semantics. The declarative semantics in Fig. 14 gives a precise definition of the
meaning of the constraints in terms of a satisfaction relation G,φ |=S C , witnessing that the
constraint C is satisfied relative to the model G,φ with support S . The notion of support is used to
distribute ownership of scopes in the graph in a disjoint fashion over the constraint. The notion of
unique ownership over scopes in the graph gives Statix constraints a separation logic flavor, which
is visible in the satisfaction rules for the ∇t constraint and conjunction C1 ∧C2. The intuition we
gave for ∇ can be captured formally as ∇x ∧ ∇y ∧ (x = y) ≡ ⊥. The rule for conjunction separates

the support S into two disjoint parts (S = S1 ⊔ S2) and distributes this among the left and right
operands. Entailment and equivalence of constraints are defined as usual:

C1 ⊩ C2 ≜ ∀ G φ S .
(

G,φ |=S C1 =⇒ G,φ |=S C2

)

C1 ≡ C2 ≜ (C1 ⊩ C2) ∧ (C2 ⊩ C1)

We emphasize that due to the presence of scope ownership, Statix constraints do not enjoy all
the equivalences that, for example, ML-constraints do [Pottier and Rémy 2005]. A general rule
(C1 ⊩ C2) =⇒ (C1 ≡ C1 ∧C2) does not hold, since bothC1 andC2 may require ownership over the
same scopes. This is consistent with the rules for separating conjunction in affine separation logics.

4 EXECUTING STATIX SPECIFICATIONS

In this section we discuss how Statix specifications can be executed as type checkers.

4.1 Constraint Solving by Simplification

The requirement to use Statix specifications as executable type checkers has guided its design.
In particular, the following three concerns have been important: (1) Specifications should have a
declarative meaning that is independent of the operational interpretation. (2) Users should not be
concerned with execution order when writing specifications. (3) The implementation should not
rely on expensive techniques such as full back-tracking, which make it difficult to reason about
performance. To achieve this, we take a constraint solving approach. User-defined constraints are

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 114. Publication date: November 2018.

Scopes as Types 114:21

typeOfExp(s, letrec b̄ in e,T) ← ∃sb.∇sb ∧ sb
P s ∧ bindOK(sb, b̄) ∧ typeOfExp(sb, e,T)

bindOK(s,xi = e) ← ∃T. typeOfExp(s, e,T) ∧ s :
(xi ,T)

letrec odd1 = fun(n2:num) { . . . even3(n4-1) . . . }

even5 = fun(n6:num) { . . . odd7(n8-1) . . . } in odd9 11

Fig. 15. Statix rules for a recursive let extension of the simply-typed lambda calculus rules of Fig. 12 and an

example program using the letrec construct.

simplified, using the rules from the specification, to built-in constraints, which are solved using
algorithms for unification and name resolution. By disallowing overlapping guards, rule selection
follows a committed choice strategy, that is, no backtracking is needed. We use the example in
Fig. 15 with Statix rules for a recursive let construct to illustrate issues around order and soundness.

Constraint Simplification. The solver maintains a state consisting of a set of constraints to solve,
a unifier, and a scope graph. The ultimate goal is to eliminate all constraints. The resulting unifier
and scope graph are the solution. We illustrate the simplification process by discussing the first
steps of checking the example program in Fig. 15. We start with a single constraint:

typeOfExp(#0, letrec odd1 = ...; even3 = ... in ...,T)

We assume a scope graph with a single scope #0. The constraint is simplified using the first rule in
Fig. 15, resulting in the constraints

∇sb0 ∧ sb0
P s ∧ bindOK(sb0, . . .) ∧ typeOfExp(sb0, . . . ,T)

A fresh unification variable sb0 is created for the locally quantified variable sb. Solving ∇sb0 results
in a fresh scope #1, which is added to the scope graph, as well as a substitution sb0 7→ #1 in the
unifier. The edge constraint sb0

P s is solved by adding an edge to the scope graph from scope #1
to scope #0. Note the order: the edge could only be added after the fresh scope was created. Next,
the solver needs to ensure that the constraint s :

(x,T) from the bindOK rule is solved for both
binds, before attempting to resolve the references in the expressions. How the solver ensures that
this is the case is the subject of most of the rest of this section.

Delayed Constraints. In general, the solver randomly selects the next constraint to solve from the
constraint set. A satisfied constraint results in an updated unifier and scope graph, and the constraint
is removed from the constraint set. If a user-defined constraint is simplified, the constraints from the
applied rule body are added to the constraint set. However, sometimes a constraint cannot be solved
yet. For example, a guard constraint T = num cannot be discharged if T is a unification variable
without a substitution. In this case, the constraint is delayed, and put back into the constraint set.
Other constraints may instantiate T, after which the equality can be tested. Just unifying T would
not be sound in general due to the committed choice strategy. Constraint solving continues until
all constraints are resolved or remain delayed. Similar techniques are found in other constraint
solvers that support guarded rules and constraints, such as CHR [Frühwirth and Brisset 1995].

4.2 Name Resolution Algorithm

The calculus presented in Section 2.1 gives a precise definition of name resolution. In this section we
discuss the name resolution algorithm that is used in the implementation of Statix. The algorithm
essentially implements an ordered depth-first search in the scope graph. The well-formedness
predicateWFL is used to control depth, and the label order <l is used to control breadth and cut-off
of the search. Cyclic paths are also disallowed (by the condition on rule (NR-Cons) in Fig. 1), so the
algorithm is terminating.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 114. Publication date: November 2018.

114:22 Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and Eelco Visser

1 2Q

x1

3P

x3

4Q

y2

5P

WFL := P∗Q∗ $ <l Q $ <l P Q <l P

WFD := DECL(x3) t1 ≤⊤ t2

1

2

3

45

6

7

Fig. 16. Name resolution example. The dashed arrows visualize the search in the graph, and the label numbers

indicate the search order.

We show how the algorithm operates using the example scope graph in Fig. 16. The parameters
we show are for resolving the reference x3. Edges have labels P and Q. Path well-formedness WFL

states that well-formed paths cannot follow Q edges after P edges. Data well-formedness WFD

matches declarations with the same name x as the reference. The label order <l prefers Q over P,
and local declarations over both. Finally, the data order ≤⊤ states that declarations via more specific
paths always shadow declarations reachable via less specific paths. Resolution starts in scope #3.
The dashed lines show the order in which the algorithm traverses the graph. The search starts

at scope #3 of the reference 1○, and tries the different labels in order. The most specific label is $,
for the local declarations. However, this scope has no local declarations, so the Q edge to #4 is
traversed 2○. Again the algorithm starts with the most specific label. In this case there are local
declarations, and the path up to here is well-formed. The local declaration y2 is matched 3○, but
the match fails, so the search continues. There are no Q edges in scope #4, so P edges are followed
next. However, according to path well-formedness, no more P steps are allowed. Therefore the
search is cut-off 4○, and continues at scope #3. After trying local declarations and Q edges, the
P edge is followed 5○, which is allowed at this point, because we are back at the starting scope and
the path is empty. The local declarations contain the matching declaration x1, which is added to
the results 6○. Next, the algorithm could continue following Q edges. However, according to the
data order, the result found so far shadows any results reachable via the less specific paths that are
tried next. Therefore, the search is cut off 7○, and the algorithm returns {(#3·P·#2, x1)} as the final
result. Note that the well-formedness cut-off can always be performed, but the order cut-off only
when the data order is always true.

4.3 Sound Name Resolution

The declarative semantics of query constraints is expressed in terms of resolution in a complete
scope graph. However, during constraint solving, we gradually build the scope graph. Invoking
the resolution algorithm on an intermediate, incomplete graph may yield a different result than
invoking it on the final graph. This is potentially unsound, and should therefore be prevented. We
explain the problem and our solution using the example from Fig. 15.

Problem. Fig. 17 shows some of the constraints that occur when checking our example, as well as
the relevant fragment of the final scope graph. Scope #1 is the let scope, while scopes #2 and #3 are
the function scopes. We only show the references and declarations for the let bindings. We discuss
the constraints for binds, on lines 1 and 4, and the declaration and query they eventually simplify
to, on lines 2 and 3, and 5 and 6, respectively. We refer to the constraints by their line numbers.

Consider a state where 1 and 4 are simplified, but 2, 3, 5 and 6 remain. Intuitively, we see that 5
must be solved before 3, and 2 before 6. This conclusion requires detailed knowledge of where
declarations are added, and what names they have. An easy approach is to delay all queries until
the graph is fully known. This solution is sound, because all queries are performed on the final
graph. However, this solution is also unsatisfactory, because the solver would not be able to solve

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 114. Publication date: November 2018.

Scopes as Types 114:23

bindOK(#1, odd1 = ... even3 ...) (1)

→ . . . #1 :
(odd1, FUN(T1, U1)) . . . (2)

. . . even3 in #2 : (d1, S1) . . . (3)

bindOK(#1, even5 = ... odd7 ...) (4)

→ . . . #1 :
(even5, FUN(T2, U2)) . . . (5)

. . . odd7 in #3 : (d2, S2) . . . (6)

(a) Bind constraints and part of their simplification

1

odd1 : T1 -> U1:

even5 : T2 -> U2:

2

P

even3

3

P

odd7

(b) Fragment of the final scope graph

Fig. 17. Partial constraints and scope graph for the letrec example program.

type dependent names, such as field accesses. Our goal is a solution that is sound, but does allow
interleaved building and querying of the scope graph.

Tracking Possible Scopes Extensions in the Constraint Set. Our solution consists of two parts. First,
the solver tracks possible scope extensions in the constraint set. Second, the resolution algorithm
aborts when it searches a scope that may be incomplete. We first consider the scenario where
constraints 2, 3, 5, and 6 are in the constraint set. Constraints 2 and 5 both extend scope #1 in the
: relation. If the solver tried to solve constraint 6, the resolution algorithm would search scope #3,
then step to scope #1, where it would try to find local data for the : relation. However, since
there are constraints in the constraint set that extend scope #1 in that relation, resolution is aborted,
and the query constraint delayed. This scheme forces constraints 2 and 5 to be solved before 3
and 6. However, possible incompleteness in other scopes, for example the parent of scope #1, would
not block solving these constraints.
The situation is more complicated when we consider user-defined constraints. For example, if

the solver is in a state where constraint 1 is simplified to 2 and 3, but 4 is not simplified yet. Solving
constraint 3 next would be unsound, because the declaration even5 is still missing in the scope
graph. The fact that the rule for bindOK contains a s :

. . . constraint, allows us to conclude that
scope #1, the first argument to bindOK, may be extended in the : relation. However, the situation
is not always that simple. Consider the following three rules for a predicate c, all extending a scope:

c(. . . , s, . . .) ← · · · ∧ s :
. . . ∧ . . .

c(. . .) ← · · · ∧ ∇s ∧ s :
. . . ∧ . . .

c(. . .) ← · · · ∧ d(. . . , s, . . .) ∧ s :
. . . ∧ . . .

The first rule is the case of bindOK, where the extended scope is passed as an argument. Here we
know how c might extend the scope. In the second rule, the scope that is extended is locally fresh.
Because the scope is fresh, we know that the extension does not concern any of the scopes already
in the scope graph. In the third rule, the scope is only restricted by a predicate d. Determining the
potential scope value(s) may be impossible, or require a sophisticated data-flow analysis. To keep
things simple, Statix does not allow rules of the third form. This restriction is reasonable if the
scope graph is seen as a rich environment. Although lookups originate in many places, construction
is inherently local. Computing the possible scope extensions for all constraints is now a simple
data flow analysis on a Statix specification. This static information is used to track possible scope
extensions for user-defined constraints.

So far all scopes in the constraint set were known. In a situation where the constraint set contains
a constraint s1 :

. . . , where s1 is a free unification variable, we cannot be sure which scope can
be extended. Therefore, as long as such a constraint is present, all scopes are marked incomplete
for the : relation. However, our rule restrictions ensure that these scope variables are eventually
substituted by constraint arguments or fresh scopes.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 114. Publication date: November 2018.

114:24 Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and Eelco Visser

4.4 Incompleteness

The technique presented above ensures that if a query is resolved, its result will not be invalidated
when the scope graph is extended. Therefore, soundness with respect to the declarative semantics
is achieved. However, this method over-approximates possible extensions, and does not take the
values stored in relations into account. Therefore, it is incomplete, and it is possible to define
constraints that get stuck, because the solver cannot find an order it knows to be safe.

In general, constraints get stuck if the extension of a scope depends on the resolution of a query
via that scope. To illustrate this, we use an example from FJ, shown in Fig. 18. It shows an incomplete
scope graph, which is the result of checking two classes, A and B extends A. Sub-classing is modeled
by an S edge from sub-class to super-class. Scope #1 of the super-class is discovered by resolving A3

in scope #2, after which the S edge is added. To solve these constraints, the resolution of A3 must
be allowed while scope #2 is incomplete in S.

0

A1 : CLASS(1)
:

1 P

B2 : CLASS(2)
:

2P A3

A3 in #2 : (d,CLASS(s)) #2 S s

WFL P <l S P ≮l S

P.p Solved Solved

S.p Stuck Stuck

(P|S).p Solved if ≤d is always true Stuck

Fig. 18. Scope graph, constraints, and stuckness for

the different possible label well-formednessWFL, label

order <l , and data order ≤d parameters

Whether resolution is possible depends on
the resolution parameters. The table in Fig. 18
lists the possible values for well-formedness, la-
bel order, and data order for this scenario. The
options are the allowed first step of the path,
and the relative specificity of labels P and S.
First row: if the first step can only be a P step,
the incompleteness in S is irrelevant, and the
reference can be resolved. Second row: if the
first step can only be a S step, then the dec-
larations are unreachable, and the constraints
cannot be solved. Third row: if both steps are
well-formed, the label order is relevant. If P
is more specific than S, the reference can be
resolved, provided the data order agrees.

5 EVALUATION

We have evaluated the expressiveness of the scopes-as-types approach and the Statix language
by means of several case studies implemented with the Spoofax Language Workbench [Kats and
Visser 2010] extended with Statix.

Statix Implementation. In this paper we have defined a Statix core language with mathematical
notation and a formal declarative semantics. We have also developed a full fledged Statix pro-
gramming language with a concrete ASCII notation embodying the design described in this paper.
We have implemented the Statix language itself with Spoofax. The implementation consists of
a syntax definition in SDF3, a type checker in NaBL2 (the precursor of Statix), and a solver in
Java. The syntax definition provides an Eclipse editor with syntax checking and highlighting of
Statix definitions. The NaBL2 definition provides type checking and reference resolution (jump
to declaration) for Statix definitions in the editor. The Statix solver interprets the AST of a Statix
specification applied to the AST of an object language program. Currently, the solver only accepts
or rejects an object language program. It does not yet give error messages to explain a failure. The
solver is integrated with object language editors and in the SPT testing framework [Kats et al. 2011].
The Statix language and solver are available in the current continuous releases of Spoofax.

Case Studies. To validate the expressiveness of Statix and the operation of the solver, we have
developed Statix specifications for several model languages: STLC-REC, System F, and FGJ. These

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 114. Publication date: November 2018.

Scopes as Types 114:25

languages represent points in the design space of type systems and are well-known benchmarks to
validate approaches and tools for type systems. The languages are models in the sense that they
are reduced to the essence of a feature in type systems and abstract from details irrelevant to that
feature. Thus, it becomes easier to appreciate the key ideas of the encoding. While such case studies
do not demonstrate that the approach scales to specification of full-fledged languages (and the
feature interaction that comes with those), they do provide evidence of the expressiveness of the
approach. For each language we have defined a Spoofax project including a syntax definition in
SDF3, a static semantics definition in Statix, example programs, and an SPT test suite to test the
static semantics. The implementations provide source code editors with syntax highlighting and
type checking, and automated execution of the test suites.

Validation. We have validated the Statix definitions in two ways. First, for each language we have
constructed test suites with key examples testing the corner cases of the language. Second, we have
constructed the definitions by closely following existing formalizations, replacing traditional name
binding mechanisms (environments, association lists, class tables) with the corresponding scope
graph mechanisms. In Section 2 we have discussed in detail type system specifications of STLC,
SLTC-REC, FJ, and System F. Those specifications are ‘backports’ from the Statix specifications
in our case studies to traditional inference rules using scope graphs for name resolution. (The
specification of FGJ combines the ideas of FJ and System F.) These presentations do not suffer from
the ‘clutter’ that comes from an encoding in ASCII, but instead use the notational abstraction of
mathematics (reducing judgements to turnstiles, vector notation for lists, concrete syntax instead
of term syntax, etc.), which should make it easier for the reader to appreciate the commonalities
and differences with standard formalizations. In Section 2 we have discussed how the specifications
for the case studies compare to standard formalizations of type systems.

Artifact. The Statix specifications from the case studies are available in the artifact accompanying
the paper, which is publicly available at https://github.com/MetaBorgCube/oopsla18-artifact. The
prototype implementation of Statix has been integrated in the Spoofax Language Workbench.

6 RELATED WORK

In this section we discuss how our approach to type system specification compares to other
approaches, focusing on the support for name binding and executability of specifications as type
checkers. In Section 2 we compared the scope graph approach with representations for name
binding in traditional type system definitions.

Name Binding Languages. Name binding is a concern in all kinds of language engineering
processes, and that can benefit from more specialized support. When formalizing a language for
use in mechanically verified meta-theory, details of name binding (e.g., substitution functions)
are important, but tedious to define. Various libraries and DSLs have been developed to automate
the support for name binding in proof assistants such as Coq. For example, AutoSubst [Schäfer
et al. 2015] is a Coq library that derives substitution and renaming functions and lemmas about
their properties from annotations on an inductive type definition; Ott [Sewell et al. 2010] is a
DSL to define type systems and reduction rules for languages with name binding, from which it
automatically generates data types and substitution functions for different proof assistant back-
ends; Lem [Mulligan et al. 2014] and Needle & Knot [Keuchel et al. 2016] provide similar support.
These tools follow similar schemas to define bindings: an annotation in the constructor signature
indicates that a binding occurrence is bound in one or more sub-terms of the binding construct.

Fig. 19 shows the definition of OCaml patterns in Ott, a non-trivial example, since the variables
occurring (deep) inside the pattern p are bound in the body t' of the let. To realize this, an auxiliary

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 114. Publication date: November 2018.

114:26 Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and Eelco Visser

t ::=

| x

| (t1, t2)

| let p = t in t' bind b(p) in t'

p ::=

| x b = x

| (p1, p2) b = b(p1) U b(p2)

| p1 | p2 b = b(p1) U b(p2)

Fig. 19. Pattern binders in Ott (from [Sewell et al. 2010])

typeOfExp(s, xi ,T) ← ∃xj . ∃T'. xi in s : (xj ,T') ∧ eqTypes(T',T)

typeOfExp(s,(t1, t2),T1 × T2) ← typeOfExp(s, t1,T1) ∧ typeOfExp(s, t2,T2)

typeOfExp(s, let p = t1 in t2,T2) ← ∃T1 . ∃sl .∇sl ∧ sl
P s ∧ typeOfExp(s, t1,T1)

∧ typePat(sl , p,T1) ∧ typeOfExp(sl , t2,T2)

typePat(s, xi ,T) ← s :
(xi ,T)

typePat(s,(p1, p2),T1 × T2) ← typePat(s, p1,T1) ∧ typePat(s, p2,T2)

typePat(s,(p1 | p2),T) ← ∃s1. ∃s2.∇s1 ∧ ∇s2 ∧ s
O s1 ∧ s

O s2

∧ typePat(s1, p1,T) ∧ typePat(s2, p2,T) ∧ comp(s1, s2)

Fig. 20. Pattern binders and types in Statix

function b(p) is defined (alongside the inductive definition) that collects the binding occurrences.
The typing rules for such a language are defined separately, and assert that the sub-patterns of
the or-pattern declare the same variables. Fig. 20 shows the definition in Statix of the typeOfExp
and typeOfPat predicates for the same language. The predicates define the binding and typing of
expressions and patterns without a separate collection traversal. Pattern variable binders are added
as declarations to the scope graph (4th rule) with a constraint variable T as type. Unification with
the requirements from the context and any references will specialize the type assignment. Checking
that the branches of an or-pattern should define the same variables is modeled by creating a new
scope for each branch, and checking with the comp predicate that they declare the same variables
with the same types (similar to structural record comparison in Section 2.3).

The Ott definition for Lightweight Java [Strnisa and Parkinson 2011] follows the F(G)J formaliza-
tion of Igarashi et al. [2001] by defining projections on syntactic entities to look-up information
instead of using binding specifications. By contrast, our definition of F(G)J uses scope graphs for
such non-lexical bindings as well (Section 2.4).

Statix does not (yet) support generating infrastructure for proof assistants, although scope graph
libraries exist for use in type safety proofs in both Coq [Poulsen et al. 2016] and Agda [Poulsen
et al. 2018]. We intend to extend these libraries to the scopes-as-types extension presented in this
paper and connect Statix type checkers to intrinsically-typed definitional interpreters.

Abstractions for Type Checker Implementation. The PLT Redex semantic specification framework
[Felleisen et al. 2009] can also be used to define type systems similar in style to traditional inference
rules using type environments. Redex supports the definition of lexical binding forms as part of
language definitions, which cause all uses of the term to avoid capture [Stansifer 2016]. Its name
binding DSL can express only simple forms of name binding. Redex rules can be used as a random
generator of (well-typed) terms [Fetscher et al. 2015; Lampropoulos et al. 2017], an interpretation
we intend to explore for Statix in future work. The Turnstile language [Chang et al. 2017], which
shares our goal of bridging specification and implementation, allows writing a type judgement-like
syntax, which directly corresponds to a macro-based type checker implementation that reuses the
binding mechanism [Flatt 2016] of the underlying macro system.
K is a framework aimed at the executable definition of dynamic semantics based on rewriting

[Rosu and Serbanuta 2010]. The context of evaluation (environment, store) is represented by (nested)

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 114. Publication date: November 2018.

Scopes as Types 114:27

configurations, which can be accessed using powerful pattern matching expressions. K can also
be used to define static semantics as a set of rules that rewrite a program to a type in abstract
interpretation style [Ellison III 2008]. In that setting, configurations are used to represent the typing
context. No further abstractions are provided for the treatment of name binding.

syn FieldDecl ClassDecl.memberField(String name) {

for(int i = 0; i < getNumBodyDecl(); i++)

if(getBodyDecl(i).isField(name))

return (FieldDecl)getBodyDecl(i);

if(getSuper().type().memberField(name) != null)

return getSuper().type().memberField(name);

return null;

}

Fig. 21. Field resolution in a class and its superclasses in

JastAdd (from [Ekman and Hedin 2006]).

The JastAdd attribute grammar sys-
tem [Ekman and Hedin 2006, 2007; Hedin
2009] uses reference attributes to link ref-
erences to their declarations in the ab-
stract syntax tree. Name resolution is de-
fined using inherited parameterized at-
tributes that search for a declaration node.
For example, the definition of the resolu-
tion of a field in a class in Fig. 21 first
considers the member fields of a class,
and if none is found, it recursively continues the search in the superclass. This is a programmatic
encoding of the name resolution query in rule (FJ-Field) in Fig. 8. Scope graphs provide a reusable
abstraction for characterizing such name resolution strategies.

Constraint-Based Approaches. The design of Statix was inspired by Constraint Handling Rules

(CHR) [Frühwirth 2009], which have been used to define type checkers. CHR provides ‘simpagation’
rules that can match multiple constraints in the constraint set simultaneously, and thus extend or
reduce the constraint set. Statix only provides rules that consider a single constraint, to ensure
deterministic execution. The built-in theory of name resolution replaces the constraint store to
support the context-sensitive nature of type checking.
Specifying and implementing type checkers using constraints is an established technique [e.g.,

Odersky et al. 1999; Pottier and Rémy 2005; Simonet and Pottier 2007; Sulzmann and Stuckey 2008;
Vytiniotis et al. 2011]. Usually name resolution is considered part of the constraint generation phase.
When it is part of the constraint language [e.g., Pottier and Rémy 2005], the constraints mimic
the (lexical) binding structure from the object language, which is a limitation for the definition of
languages with type-dependent name resolution. To extend Hindley-Milner type inference [Damas
and Milner 1982; Hindley 1969; Milner 1978] to System F, Pierce and Turner [2000] and Odersky
et al. [2001] developed bidirectional type checking, which carefully controls the introduction of
constraint variables for the inference of type parameters. Our definition of System F (Section 2.5)
does not include inference of type parameters, but the bidirectional approach seems to be applicable.

7 CONCLUSION

We have demonstrated that the scope graph framework covers a wide range of name binding
patterns in programming languages, including structural and parameterized types. We have also
presented the design of Statix, a language for the specification of type checkers that uses scope
graphs to abstract from the stratification of collecting and using binding information. We believe
that the scope graph approach has the potential for standardizing the treatment of name binding in
programming languages and their tools, just as context-free grammars have done for syntax.

ACKNOWLEDGMENTS

We thank Reuben Rowe, Robbert Krebbers, Andrew Tolmach, Robby Findler, Simon Peyton Jones,
and the OOPSLA reviewers for their comments on earlier versions of this paper. This research was
funded by the NWO VICI Language Designer’s Workbench project (639.023.206).

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 114. Publication date: November 2018.

114:28 Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and Eelco Visser

REFERENCES

Martín Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. 1991. Explicit Substitutions. Journal of Functional

Programming 1, 4 (1991), 375ś416.

Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro Stucki. 2016. The Essence of Dependent Object

Types. In A List of Successes That Can Change the World - Essays Dedicated to Philip Wadler on the Occasion of His 60th

Birthday (Lecture Notes in Computer Science), Sam Lindley, Conor McBride, Philip W. Trinder, and Donald Sannella (Eds.),

Vol. 9600. Springer, 249ś272. https://doi.org/10.1007/978-3-319-30936-1_14

Nada Amin and Tiark Rompf. 2017. Type soundness proofs with definitional interpreters. In Proceedings of the 44th ACM

SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017, Giuseppe

Castagna and Andrew D. Gordon (Eds.). ACM, 666ś679. https://doi.org/citation.cfm?id=3009866

Luca Cardelli. 1988. Structural Subtyping and the Notion of Power Type. In POPL. 70ś79.

Stephen Chang, Alex Knauth, and Ben Greenman. 2017. Type systems as macros. In Proceedings of the 44th ACM SIGPLAN

Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017, Giuseppe Castagna

and Andrew D. Gordon (Eds.). ACM, 694ś705. https://doi.org/citation.cfm?id=3009886

Luís Damas and Robin Milner. 1982. Principal Type-Schemes for Functional Programs. In POPL. 207ś212.

Torbjörn Ekman and Görel Hedin. 2006. Modular Name Analysis for Java Using JastAdd. In Generative and Transformational

Techniques in Software Engineering, International Summer School, GTTSE 2005, Braga, Portugal, July 4-8, 2005. Revised

Papers (Lecture Notes in Computer Science), Ralf Lämmel, João Saraiva, and Joost Visser (Eds.), Vol. 4143. Springer, 422ś436.

https://doi.org/10.1007/11877028_18

Torbjörn Ekman and Görel Hedin. 2007. The JastAdd extensible Java compiler. In Proceedings of the 22nd Annual ACM

SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2007, October 21-25,

2007, Montreal, Quebec, Canada, Richard P. Gabriel, David F. Bacon, Cristina Videira Lopes, and Guy L. Steele Jr. (Eds.).

ACM, 1ś18. https://doi.org/10.1145/1297027.1297029

Charles M. Ellison III. 2008. A Rewriting Logic Approach to Defining Type Systems. Master’s thesis. University of Illinois at

Urbana-Champaign. http://hdl.handle.net/2142/18078.

Matthias Felleisen, Robby Findler, and Matthew Flatt. 2009. Semantics Engineering with PLT Redex. MIT Press. https:

//doi.org/catalog/item/default.asp?ttype=2&tid=11885

Burke Fetscher, Koen Claessen, Michal H. Palka, John Hughes, and Robby Findler. 2015. Making Random Judgments:

Automatically Generating Well-Typed Terms from the Definition of a Type-System. In Programming Languages and

Systems - 24th European Symposium on Programming, ESOP 2015, Held as Part of the European Joint Conferences on Theory

and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings (Lecture Notes in Computer Science), Jan

Vitek (Ed.), Vol. 9032. Springer, 383ś405. https://doi.org/10.1007/978-3-662-46669-8_16

Matthew Flatt. 2016. Binding as sets of scopes. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, Rastislav Bodik and Rupak

Majumdar (Eds.). ACM, 705ś717. https://doi.org/10.1145/2837614.2837620

Thom Frühwirth. 2009. Constraint Handling Rules. Cambridge University Press.

Thom Frühwirth and Pascal Brisset. 1995. High-Level Implementations of Constraint Handling Rules. Technical Report

ECRC-TR-95-20.

Jean-Yves Girard. 1972. Interprétation fonctionnelle et élimination des coupures de l’arithmétique d’ordre supérieur. Ph.D.

Dissertation. Université Paris 7.

Görel Hedin. 2009. An Introductory Tutorial on JastAdd Attribute Grammars. In Generative and Transformational Techniques

in Software Engineering III - International Summer School, GTTSE 2009, Braga, Portugal, July 6-11, 2009. Revised Papers

(Lecture Notes in Computer Science), Joao M. Fernandes, Ralf Lämmel, Joost Visser, and João Saraiva (Eds.), Vol. 6491.

Springer, 166ś200. https://doi.org/10.1007/978-3-642-18023-1_4

Roger Hindley. 1969. The Principal Type-Scheme of an Object in Combinatory Logic. Trans. Amer. Math. Soc 146 (December

1969).

Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. 2001. Featherweight Java: a minimal core calculus for Java and GJ.

ACM Transactions on Programming Languages and Systems 23, 3 (2001), 396ś450. https://doi.org/10.1145/503502.503505

Lennart C. L. Kats, Rob Vermaas, and Eelco Visser. 2011. Testing domain-specific languages. In Companion to the 26th

Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2011,

part of SPLASH 2011, Portland, OR, USA, October 22 - 27, 2011, Cristina Videira Lopes and Kathleen Fisher (Eds.). ACM,

25ś26. https://doi.org/10.1145/2048147.2048160

Lennart C. L. Kats and Eelco Visser. 2010. The Spoofax language workbench: rules for declarative specification of languages

and IDEs. In Proceedings of the 25th Annual ACM SIGPLANConference on Object-Oriented Programming, Systems, Languages,

and Applications, OOPSLA 2010, William R. Cook, Siobhán Clarke, and Martin C. Rinard (Eds.). ACM, Reno/Tahoe, Nevada,

444ś463. https://doi.org/10.1145/1869459.1869497

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 114. Publication date: November 2018.

https://doi.org/10.1007/978-3-319-30936-1_14
https://doi.org/citation.cfm?id=3009866
https://doi.org/citation.cfm?id=3009886
https://doi.org/10.1007/11877028_18
https://doi.org/10.1145/1297027.1297029
http://hdl.handle.net/2142/18078
https://doi.org/catalog/item/default.asp?ttype=2&tid=11885
https://doi.org/catalog/item/default.asp?ttype=2&tid=11885
https://doi.org/10.1007/978-3-662-46669-8_16
https://doi.org/10.1145/2837614.2837620
https://doi.org/10.1007/978-3-642-18023-1_4
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/2048147.2048160
https://doi.org/10.1145/1869459.1869497

Scopes as Types 114:29

Steven Keuchel, Stephanie Weirich, and Tom Schrijvers. 2016. Needle & Knot: Binder Boilerplate Tied Up. In Programming

Languages and Systems - 25th European Symposium on Programming, ESOP 2016, Held as Part of the European Joint Confer-

ences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings (Lecture Notes

in Computer Science), Peter Thiemann (Ed.), Vol. 9632. Springer, 419ś445. https://doi.org/10.1007/978-3-662-49498-1_17

Leonidas Lampropoulos, Diane Gallois-Wong, Catalin Hritcu, John Hughes, Benjamin C. Pierce, and Li yao Xia. 2017.

Beginner’s luck: a language for property-based generators. In Proceedings of the 44th ACM SIGPLAN Symposium on

Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017, Giuseppe Castagna and Andrew D.

Gordon (Eds.). ACM, 114ś129. https://doi.org/citation.cfm?id=3009868

Robin Milner. 1978. A Theory of Type Polymorphism in Programming. J. Comput. Syst. Sci. 17, 3 (1978), 348ś375.

Dominic P. Mulligan, Scott Owens, Kathryn E. Gray, Tom Ridge, and Peter Sewell. 2014. Lem: reusable engineering of

real-world semantics. In Proceedings of the 19th ACM SIGPLAN international conference on Functional programming,

Gothenburg, Sweden, September 1-3, 2014, Johan Jeuring and Manuel M. T. Chakravarty (Eds.). ACM, 175ś188. https:

//doi.org/10.1145/2628136.2628143

Pierre Néron, Andrew P. Tolmach, Eelco Visser, and GuidoWachsmuth. 2015. A Theory of Name Resolution. In Programming

Languages and Systems - 24th European Symposium on Programming, ESOP 2015, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings (Lecture Notes in

Computer Science), Jan Vitek (Ed.), Vol. 9032. Springer, 205ś231. https://doi.org/10.1007/978-3-662-46669-8_9

Martin Odersky, Martin Sulzmann, and Martin Wehr. 1999. Type Inference with Constrained Types. TAPOS 5, 1 (1999),

35ś55.

Martin Odersky, Christoph Zenger, and Matthias Zenger. 2001. Colored local type inference. In POPL. 41ś53. https:

//doi.org/10.1145/360204.360207

Benjamin C. Pierce. 2002. Types and Programming Languages. MIT Press, Cambridge, Massachusetts.

Benjamin C. Pierce and David N. Turner. 2000. Local type inference. ACM Transactions on Programming Languages and

Systems 22, 1 (2000), 1ś44. https://doi.org/10.1145/345099.345100

François Pottier and Diddier Rémy. 2005. The Essence of ML Type Inference. In Advanced Topics in Types and Programming

Languages, Benjamin C. Pierce (Ed.). The MIT Press, 389ś489.

Casper Bach Poulsen, Pierre Néron, Andrew P. Tolmach, and Eelco Visser. 2016. Scopes Describe Frames: A Uniform Model

for Memory Layout in Dynamic Semantics. In 30th European Conference on Object-Oriented Programming, ECOOP 2016,

July 18-22, 2016, Rome, Italy (LIPIcs), Shriram Krishnamurthi and Benjamin S. Lerner (Eds.), Vol. 56. Schloss Dagstuhl -

Leibniz-Zentrum fuer Informatik. https://doi.org/10.4230/LIPIcs.ECOOP.2016.20

Casper Bach Poulsen, Arjen Rouvoet, Andrew P. Tolmach, Robbert Krebbers, and Eelco Visser. 2018. Intrinsically-typed

definitional interpreters for imperative languages. PACMPL 2, POPL (2018). https://doi.org/10.1145/3158104

John C. Reynolds. 1974. Towards a theory of type structure. In Programming Symposium, Proceedings Colloque sur la

Programmation, Paris, France, April 9-11, 1974 (Lecture Notes in Computer Science), Bernard Robinet (Ed.), Vol. 19. Springer,

408ś423.

Grigore Rosu and Traian-Florin Serbanuta. 2010. An overview of the K semantic framework. Journal of Logic and Algebraic

Programming 79, 6 (2010), 397ś434. https://doi.org/10.1016/j.jlap.2010.03.012

Steven Schäfer, Tobias Tebbi, and Gert Smolka. 2015. Autosubst: Reasoning with de Bruijn Terms and Parallel Substitutions.

In Interactive Theorem Proving - 6th International Conference, ITP 2015, Nanjing, China, August 24-27, 2015, Proceedings

(Lecture Notes in Computer Science), Christian Urban and Xingyuan Zhang (Eds.), Vol. 9236. Springer, 359ś374. https:

//doi.org/10.1007/978-3-319-22102-1_24

Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge, Susmit Sarkar, and Rok Strnisa.

2010. Ott: Effective tool support for the working semanticist. Journal of Functional Programming 20, 1 (2010), 71ś122.

https://doi.org/10.1017/S0956796809990293

Vincent Simonet and François Pottier. 2007. A constraint-based approach to guarded algebraic data types. ACM Transactions

on Programming Languages and Systems 29, 1 (2007), 1. https://doi.org/10.1145/1180475.1180476

Paul Stansifer. 2016. Flexible binding-safe programming. Ph.D. Dissertation. Northeastern University.

Rok Strnisa and Matthew J. Parkinson. 2011. Lightweight Java. Archive of Formal Proofs 2011 (2011). https://doi.org/entries/

LightweightJava.shtml Formal proof development.

Martin Sulzmann and Peter J. Stuckey. 2008. HM(X) type inference is CLP(X) solving. Journal of Functional Programming

18, 2 (2008), 251ś283. https://doi.org/10.1017/S0956796807006569

Hendrik van Antwerpen, Pierre Néron, Andrew P. Tolmach, Eelco Visser, and Guido Wachsmuth. 2016. A constraint

language for static semantic analysis based on scope graphs. In Proceedings of the 2016 ACM SIGPLAN Workshop on

Partial Evaluation and Program Manipulation, PEPM 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, Martin Erwig and

Tiark Rompf (Eds.). ACM, 49ś60. https://doi.org/10.1145/2847538.2847543

Eelco Visser, Guido Wachsmuth, Andrew P. Tolmach, Pierre Néron, Vlad A. Vergu, Augusto Passalaqua, and Gabriël Konat.

2014. A Language Designer’s Workbench: A One-Stop-Shop for Implementation and Verification of Language Designs.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 114. Publication date: November 2018.

https://doi.org/10.1007/978-3-662-49498-1_17
https://doi.org/citation.cfm?id=3009868
https://doi.org/10.1145/2628136.2628143
https://doi.org/10.1145/2628136.2628143
https://doi.org/10.1007/978-3-662-46669-8_9
https://doi.org/10.1145/360204.360207
https://doi.org/10.1145/360204.360207
https://doi.org/10.1145/345099.345100
https://doi.org/10.4230/LIPIcs.ECOOP.2016.20
https://doi.org/10.1145/3158104
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1007/978-3-319-22102-1_24
https://doi.org/10.1007/978-3-319-22102-1_24
https://doi.org/10.1017/S0956796809990293
https://doi.org/10.1145/1180475.1180476
https://doi.org/entries/LightweightJava.shtml
https://doi.org/entries/LightweightJava.shtml
https://doi.org/10.1017/S0956796807006569
https://doi.org/10.1145/2847538.2847543

114:30 Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and Eelco Visser

In Onward! 2014, Proceedings of the 2014 ACM International Symposium on New Ideas, New Paradigms, and Reflections

on Programming & Software, part of SPLASH ’14, Portland, OR, USA, October 20-24, 2014, Andrew P. Black, Shriram

Krishnamurthi, Bernd Bruegge, and Joseph N. Ruskiewicz (Eds.). ACM, 95ś111. https://doi.org/10.1145/2661136.2661149

Dimitrios Vytiniotis, Simon L. Peyton Jones, Tom Schrijvers, and Martin Sulzmann. 2011. OutsideIn(X) Modular type

inference with local assumptions. J. Funct. Program. 21, 4-5 (2011), 333ś412.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 114. Publication date: November 2018.

https://doi.org/10.1145/2661136.2661149

	Abstract
	1 Introduction
	2 Scopes as Types
	2.1 Scope Graphs and the Resolution Calculus
	2.2 Simply-Typed Lambda Calculus
	2.3 Records and Structural Subtyping
	2.4 Classes and Nominal Subtyping: Featherweight Java
	2.5 Parametric Polymorphism
	2.6 Discussion

	3 Statix: Specification with Scopes and Constraints
	4 Executing Statix Specifications
	4.1 Constraint Solving by Simplification
	4.2 Name Resolution Algorithm
	4.3 Sound Name Resolution
	4.4 Incompleteness

	5 Evaluation
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

